PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aeroacoustic analysis based on FW–H analogy to predict low-frequency in-plane harmonic noise of a helicopter rotor in hover

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The integral formulation of the Ffowcs-Williams and Hawkings (FW–H) analogy, developed by Farassat (known as Farassat’s formulation 1A), is implemented to study the sound generation and propagation of rotating slender bodies. The general post-processing numerical code utilizes the linear acoustic theory to predict the thickness and loading noise terms for bodies in subsonic motion. The developed numerical code is validated for elementary acoustic sources (rotating monopole and dipole) against analytical solutions. The validated code is then applied for prediction of lowfrequency in-plane harmonic noise (LF-IPH) of a model helicopter rotor of Sargent and Schmitz in a low-thrust hover with full-scale tip Mach number. The required loading distribution of the rotor blade is obtained with CFD (RANS) and Blade Element Momentum Theory (BEMT) methods and also validated against literature data. The developed acoustic code, supplemented by CFD and BEMT loading analyses, allows for a detailed comparison (thickness and loading, near- and far-field, etc.) of the LFIPH noise of a helicopter rotor in both, time and frequency domains. The predicted (FW–H) acoustic signals are compared not only with the reference code solutions, but also with the experimental data. Moreover, the paper quantifies the impact of computational grid density and time-step size (used by CFD and FW–H codes) on the final solution accuracy. Additionally, a simplified analytical code is developed (based on elementary dipole solutions, compact chord assumption and BEMT method) allowing for the initial loading noise analysis with highly reduced computational resources. The acquired results are fully compatible with the classical FW–H analysis in terms of the impact of the in-plane and out-of-plane forces on the generated noise. The FW–H code predictions of the acoustic pressure and its components are in satisfactory agreement with the reference and experimental data of Sargent and Schmitz.
Rocznik
Strony
201--246
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk
Bibliografia
  • 1. M.V. Lowson, Progress towards quieter civil helicopters, The Aeronautical Journal, 96, 956, 209–223, 1992.
  • 2. B.W. Sim, R.D. Janakiram, N.L. Barbely, E. Solis, Reduced in-plane, low-frequency noise of an active flap rotor, Journal of the American Helicopter Society, 59, 2, 022002, 1–17, 2014.
  • 3. Y. Shi, T. Li, X. He, L. Dong, G. Xu, Helicopter rotor thickness noise control Rusing unsteady force excitation, Applied Sciences, 9, 1351, 03, 2019.
  • 4. P. Beaumier, B. Van Der Wall, K. Pengel, C. Kessler, M. Gervais, Y. Delrieux, J.F. Hirsch, P. Crozier, From ERATO basic research to the blue edgetm rotor blade: an example of virtual engineering, Rotorcraft Virtual Engineering Conference, hal-01413109, 2016.
  • 5. H.H. Hubbard, Aeroacoustics of Flight Vehicles: Theory and Practice, Vol. 1: Noise Sources, NASA Langley Reference Publication, 1258, 1991.
  • 6. F. H. Schmitz, The challenges and possibilities of a truly quiet helicopter, 29th Alexander A. Nikolsky honorary lecture, Journal of the American Helicopter Society, 61, 4, 1–33, 2016.
  • 7. F.H. Schmitz, Y.H. Yu, Helicopter impulsive noise, theoretical and experimental status, Journal of Sound and Vibration, 109, 3, 361–422, 1986.
  • 8. D.A. Boxwell, F.H. Schmitz, Full-scale measurements of blade-vortex interaction noise, Journal of the American Helicopter Society, 27, 11–27, 1982.
  • 9. T.F. Brooks, M.A. Marcolini, P.S. Dennis, Main rotor broadband noise study in the DNW, Journal of the American Helicopter Society, 34, 2, 3–12, 1989.
  • 10. K.S. Brentner, F. Farassat, Modeling aerodynamically generated sound of helikopter rotors, Progress in Aerospace Sciences, 39, 2, 83–120, 2003.
  • 11. B.R. Jones, W.A. Crossley, A.S. Lyrintzis, Aerodynamic and aeroacoustic optimization of rotorcraft airfoils via a parallel genetic algorithm, Journal of Aircraft, 37, 11, 1088–1096, 2000.
  • 12. G. Wilke, Quieter and greener rotorcraft: concurrent aerodynamic and acoustic optimization, CEAS Aeronautical Journal, 12, 495–508, 2021.
  • 13. S. Moreau, The third golden age of aeroacoustics, Physics of Fluids, 34, 3, 031301, 2022.
  • 14. C.K.W. Tam, Computational aeroacoustics: an overview of computational challenges and applications, International Journal of Computational Fluid Dynamics, 18, 6, 547–567, 2004.
  • 15. A.S. Lyrintzis, Surface integral methods in computational aeroacoustics – from the (CFD) near-field to the (acoustic) far-field, International Journal of Aeroacoustics, 2, 2, 95–128, 2003.
  • 16. J.W. Kim, D.J. Lee, Generalized characteristic boundary conditions for computational aeroacoustics, AIAA Journal, 38, 11, 2040–2049, 2000.
  • 17. T. Colonius, S.K. Lele, Computational aeroacoustics: progress on nonlinear problems of sound generation, Progress in Aerospace Sciences, 40, 6, 345–416, 2004.
  • 18. S.K. Lele, Computational aeroacoustics – A review, American Institute of Aeronautics and Astronautics, 35th Aerospace Sciences Meeting and Exhibit, 1997.
  • 19. C. Hansen, Fundamentals of acoustics, American Journal of Physics, 19, 1951.
  • 20. M. J. Lighthill, On sound generated aerodynamically I. General theory, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 211, 1107, 564–587, 1952.
  • 21. N. Curle, The influence of solid boundaries upon aerodynamic sound, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 231, 1187, 505–514, 1955.
  • 22. J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfa ces in arbitrary motion, Philosophical transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 264, 321–342, 1969.
  • 23. F. Farassat, K.S. Brentner, The uses and abuses of the acoustic analogy in helikopter rotor noise prediction, Journal of the American Helicopter Society, 33, 1, 29, 1988.
  • 24. Z. Huang, L. Siozos-Rousoulis, T. De Troyer, G. Ghorbaniasl, Helicopter rotor noise prediction using a convected FW-H equation in the frequency domain, Applied Acoustics, 140, 11, 122–131, 2018.
  • 25. O. Szulc, Rotorcraft Thickness Noise Control, Archives of Mechanics, 73, 4, 391–417, 2021.
  • 26. D.A. Smith, A. Filippone, G.N. Barakos, Acoustic analysis of counter-rotating open rotors with a locked blade row, AIAA Journal, 58, 10, 4401–4414, 2020.
  • 27. E. Fabiano, A. Mishra, D.J. Mavriplis, K. Mani, Time-dependent aero-acoustic adjoint-based shape optimization of helicopter rotors in forward flight, 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016.
  • 28. F. Farassat, Derivation of formulations 1 and 1A of Farassat, NASA Technical Report, 214853 (TM-2007-214853), 1–25, 2007.
  • 29. S.W. Rienstra, A. Hirschberg, An Introduction to Acoustics, Technische Universiteit Eindhoven, 0103, 2001.
  • 30. D. Sargent, F.H. Schmitz, Fundamental experimental studies supporting active-jet acoustic control of in-plane rotor harmonic noise, Journal of Aircraft, 51, 2, 434–446, 2014.
  • 31. G. Gopalan, F.H. Schmitz, Understanding far field near-in-plane high speed harmonic helicopter rotor noise in hover and forward flight: governing parameters and design trends, American Helicopter Society Technical Specialists’ Conference, 2008.
  • 32. F. Farassat, Introduction to generalized functions with applications in aerodynamics and aeroacoustics, NASA Technical Paper, 3248, 1994.
  • 33. F. Farassat, The Kirchhoff Formulas for moving surfaces in aeroacoustics – the subsonic and supersonic cases, NASA Technical Memorandum, 110285, 1996.
  • 34. F. Farassat, Theory of noise generation from moving bodies with an application to helikopter rotors, NASA Technical Report, R-451, 1975.
  • 35. F. Caradonna, C. Tung, Experimental and analytical studies of a model helikopter rotor in hover, Technical Memorandum, NASA Ames, 81232, 1981.
  • 36. J.G. Leishman, Principles of Helicopter Aerodynamics, Chapter 3: Blade Element Analysis, Cambridge University Press, 115–170, Cambridge, 2006.
  • 37. J. Raddatz, J.K. Fassbender, Block structured Navier–Stokes solver FLOWer, [in:] MEGAFLOW – numerical flow simulation for aircraft design, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 89, 27–44, 2005.
  • 38. T. Rung, H. Lübcke, M. Franke, F. Xue, F. Thiele, S. Fu, Assessment of Explicit Algebraic Stress Models in Transonic Flows, International Symposium on Engineering Turbulence Modelling and Measurements, 1999.
  • 39. T. Suresh, O. Szulc, P. Flaszynski, P. Doerffer, Prediction of helicopter rotor noise in hover using FW-H analogy, Journal of Physics: Conference Series, 1101, 2018.
  • 40. N.A.R.N. Mohd, G.N. Barakos, Computational aerodynamics of hovering helikopter rotors, Jurnal Mekanikal, 34, 16–46, 2012.
  • 41. F. Tejero, P. Doerffer, P. Flaszynski, O. Szulc, Passive flow control application for rotorcraft in transonic conditions, International Journal of Numerical Methods for Heat and Fluid Flow, 5, 28, 1080–1095, 2018.
  • 42. P.J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, 107–142, Sorocco, New Mexico, 1998.
  • 43. E. Greenwood, F.H. Schmitz, The effects of ambient conditions on helicopter rotor source noise modeling, American Helicopter Society 67th Annual Forum, 05, 2011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d9ea035-6af4-4793-8a3c-89314ee01bf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.