PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructure, surface topography and sliding wear behaviour of titanium based coating on AISI 1040 steel by magnetron sputtering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, 2% B4C reinforced with Ti–6Al–4V composite coatings on AISI 1040 steel plates were coated using magnetron sputtering. The microstructure and surface morphologies of the coated specimen were analyzed using SEM, XRD, EDS and AFM. The uniform coating thickness of 75 nm and 110 nm on smooth surfaces have been obtained for 0.5 h and 1 h coating time respectively. Under the normal load of 2 N and 3 N, Ti–Al–V–B4C coatings wear analysis were performed and resulted in excellent wear rate with lower coefficient of friction. Ti–Al–V–B4C thin film shows the nano hardness value of 7.2 GPa and 9.7 GPa for 0.5 h and 1 h coating time and elastic modulus of 204 GPa. The surface roughness (Ra) of 0.5 h and 1 h coating are 3.393 nm and 17.433 nm respectively. The addition of B4C particles reinforced Ti–Al–V composite coatings showed enhanced nano hardness and improved the wear resistance with decrease in the coefficient of friction. The amount of heat generated during wear test has been calculated. Ti–Al–V–B4C composite coatings were exposed to lowest wear rates among all loading conditions and thus signifying that it could be a promising alternative to other hard coatings.
Rocznik
Strony
281--292
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Centre for Nano Science & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamil Nadu, India
  • Department of Mechanical Engineering, Bethlahem Institute of Engineering, Karungal, Tamilnadu, India
Bibliografia
  • [1] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159–172.
  • [2] S. Sen, U. Sen, Sliding wear behavior of niobium carbide coated AISI 1040 steel, Wear 264 (2008) 219–225.
  • [3] A.V. Stanishevsky, M.J. Walock, Y. Zou, L. Imhoff, A. Zairi, C. Nouveau, Growth of WC-Cr-N and WC-Al-N coatings in a RF-magnetron sputtering process, Vacuum 90 (2013) 129– 134.
  • [4] N.V. Gavrilov, V.V. Ivanov, A.V. Nikonov, Investigations of Mn–Co–O and Mn–Co–Y–O coatings deposited by the magnetron sputtering on ferritic stainless steels, Surface & Coatings Technology 206 (2011) 1252–1258.
  • [5] H. Pengfei, J. Bailing, Study on tribological property of CrCN coating based on magnetron sputtering plating technique, Vacuum 85 (2011) 994–998.
  • [6] U. Sen, Wear properties of niobium carbide coatings performed by pack method on AISI 1040 steel, Thin Solid Films 483 (2005) 152–157.
  • [7] L. Benea, S.-B. Başa, E. Danaila, N. Caron, O. Raquet, P. Ponthiaux, J.-P. Celis, Fretting and wear behaviors of Ni/nano- WC composite coatings in dry and wet conditions, Materials & Design 65 (2015) 550–558.
  • [8] A. Cavasin, T. Brzezinski, S. Grenier, M. Smagorinski, W and B4C coatings for nuclear fusion reactors, Advanced Materials & Processes 167 (1998) 957–961.
  • [9] R. Harichandran, N. Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation- assisted solidification process, Archives of Civil and Mechanical Engineering 16 (1) (2016) 147–158.
  • [10] W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M. B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, K. Akhtar, Cold compaction study of Armstrong process Ti–6Al–4V powders, Powder Technology 214 (2011) 194–199.
  • [11] S.C. Vettivel, N. Selvakumar, N. Leema, Experimental and prediction of sintered Cu–W composite by using artificial neural networks, Materials and Design 45 (2013) 323–335.
  • [12] M. Wang, T. Toihara, M. Sakurai, W. Kurosaka, S. Miyake, Surface morphology and tribological properties of DC sputtered nanoscale multilayered TiAlN/CNx coatings, Tribology International 73 (2014) 36–46.
  • [13] K.W. Xu, G.L. Hou, B.C. Hendrix, J.W. He, Y. Sun, S. Zheng, A. Bloyce, T. Bell, Prediction of nanoindentation hardness profile from a load–displacement curve, Journal of Materials Research 13 (12) (1998) 3519–3526.
  • [14] C.-H. Tasi, Y.-C. Tseng, S.-R. Jian, Y.-Y. Liao, C.-M. Lin, P.-F. Yang, D.-L. Chen, H.-J. Chen, C.-W. Luo, J.-Y. Juang, Nanomechanical properties of Bi2Te3 thin films by nanoindentation, Journal of Alloys and Compounds 619 (2015) 834–838.
  • [15] M. Yandouzi, A.J. Bottger, R.W.A. Hendrikx, M. Brochu, P. Richer, A. Charest, B. Jodoin, Microstructure and mechanical properties of B4C reinforced Al-based matrix composite coatings deposited by CGDS and PGDS processes, Surface & Coatings Technology 205 (2010) 2234–2246.
  • [16] Y.-S. Yang, T.-P. Cho, H.-W. Ye, The effect of deposition parameters on the mechanical properties of Cr–C–N coatings, Surface & Coatings Technology 259 (2014) 141–145.
  • [17] S.B. Pitchuka, B. Boesl, C. Zhang, D. Lahiri, Dry sliding wear behavior of cold sprayed aluminum amorphous/ nanocrystalline alloy coatings, Surface & Coatings Technology 238 (2014) 118–125.
  • [18] H.E. Maupin, R.D. Wilson, J.A. Hawk, Wear deformation of ordered Fe-Al intermetallic alloys, Wear 162–164 (1993) 432–440.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d9c082a-2e66-4898-b628-d2e57930e3e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.