Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New challenges posed to internal combustion engines require a fresh approach and the application of modern simulation methods. This study focuses on the numerical analysis of the co-combustion process of diesel fuel with butyl alcohol in a dual-fuel, self-ignition internal combustion engine based on a three-dimensional engine model developed in AVL Fire software. The influence of butanol content, ranging from 0 to 60 %, on engine performance and emissions was investigated. Increasing the amount of butyl alcohol burned with diesel fuel leads to a delay in ignition, decreases maximum cylinder pressure and temperature, and increases the rate of pressure rise and heat release rate. For alcohol content of 20 % and 40 %, there is an increase in pressure and indicated power compared to diesel fuel alone. The addition of butanol to diesel fuel reduces the specific emissions of nitrogen oxides and Soot in the dual-fuel engine. The most favorable case was with a 40 % butanol content. For DB40, the highest IMEP (0.69 MPa) and __ (10.37 kW) values were obtained, along with the highest TE efficiency (43.64 %). In comparison to D100, lower NO and Soot emissions were achieved for this case by 35 % and 65 % respectively.
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Thermal Machinery, Czestochowa University of Technology Czestochowa, Poland
autor
- Department of Thermal Machinery, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
- 1. Pyrc, M., Gruca, M., Tutak, W., & Jamrozik, A. (2023). Assessment of the co-combustion proces of ammonia with hydrogen in a research VCR piston engine. International Journal of Hydrogen Energy, 48, 2821-2834.
- 2. Jamrozik, A., Grab-Rogaliński, K., & Tutak, W. (2020). Hydrogen effects on combustion stability, performance and emission of diesel engine. International Journal of Hydrogen Energy, 45, 19936-19947.
- 3. Bjorgen, K.O.P., Emberson, D.R., & Lovas, T. (2024). Combustion of liquid ammonia and diesel in a compression ignition engine operated in high-pressure dual fuel mode. Fuel, 360, 130269.
- 4. Jamrozik, A., Tutak, W., & Grab-Rogaliński, K. (2022). Effects of propanol on the performance and emissions of a dual‐fuel industrial diesel engine. Applied Sciences, 12, 5674.
- 5. Dupuy, A., Brequigny, P., Schmid, A., Frapolli, N., & Mounaim-Rousselle, C. (2023). Experimental study of RCCI engine – Ammonia combustion with diesel pilot injection. The Journal of Ammonia Energy, 01, 11-20.
- 6. Kapusta, Ł.J., & Teodorczyk, A. (2012). Numerical simulations of a simultaneous direct injection of liquid and gaseous fuels into a constant volume chamber. Journal of Power Technologies, 92(1), 12-19.
- 7. Lebedevas, S., Pukalskas, S., & Daukšys, V. (2020). Mathematical modelling of indicative process parameters of dual-fuel engines with conventional fuel injection system. Transport, 35/1, 57-67.
- 8. Zhang Z., Li J., Tian, J., Xie, G., Tan, D., Qin, B., Huang, Y., & Cui, S. (2021). Effects of different diesel-ethanol dual fuel ratio on performance and emission characteristics of diesel engine. Processes, 9, 1135.
- 9. Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40/13-14, 6293-6309.
- 10. Zhang, Z., Zhao, Ch., Xie, Z., Zhang, F., & Zhao, Z. (2014). Study on the effect of the nozzle diameter and swirl ratio on the combustion process for an opposed-piston two-stroke diesel engine. Energy Procedia, 61, 542-546.
- 11. Khatamnejad, H., Khalilarya, S., Jafarmadar, S., Mirsalim, M., & Dahodwala, M. (2018). Toward an improvement of natural gas-diesel dual fuel engine operation at part load condition by detail CFD simulation. International Journal of Engineering, 31(4), 1082-1087.
- 12. Pham, V.C., Choi, J.-H., Rho, B.-S., Kim, J.-S., Park, K., Park, S.-K., Le, V.V., & Lee, W.-J. (2021). A numerical study on the combustion process and emission characteristics of a natural gas-diesel dual-fuel marine engine at full load. Energies, 14, 1342.
- 13. Stipic, M., Basara, B., Schmidt, S.J., & Adams, N.A. (2023). Tabulated chemistry combustion model for cost-effective numerical simulation of dual-fuel combustion process. Energies, 16, 8040.
- 14. Kapusta, Ł.J., & Teodorczyk, A. (2015). Numerical simulations of dual fuel combustion in a heavy duty compression ignition engine. Combustion Engines, 163(4), 47-56.
- 15. Pietrykowski, K., Grabowski, Ł., Sochaczewski, R., & Wendeker, M. (2013). The CFD model of the mixture formation in the diesel dual-fuel engine. Combustion Engines, 154(3), 476-482.
- 16. Yadollahi, B., & Boroomand, M. (2013). Multidimensional modeling of CNG direct injection and mixture preparation in a SI engine cylinder. Scientia Iranica B, 20(6), 1729-1741.
- 17. Krajnovic, J., Dilber, V., Sjeric, M., Tomic, R., Vucetic, A., & Kozarac, D. (2022). Development of numerical framework for research of the pre-chamber SI combustion. SAE Technical Paper 2022-01-0387, 2022.
- 18. Colin, O., & Benkenida, A. (2004). The 3-Zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. – Rev., 59, 593-609.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d9385d9-6326-4c1b-a124-9d8e6231aa09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.