PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularized error function-based extended Kalman filter for estimating the cancer chemotherapy dosage: impact of improved grey wolf optimization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: The main aim of this work is to introduce a robust controller for controlling the drug dosage. Methods: The presented work establishes a novel robust controller that controls the drug dosage and it also carried out parameters estimation. Along with this, a Regularized Error Function-based EKF (REF-EKF) is introduced for estimating the tumor cells that could be adapted for different conditions. It also assists in solving the overfitting problems, which occur during the drug dosage estimation. Moreover, the performance of the adopted controller is compared over other conventional schemes, and the attained outcomes reveal the appropriate impact of drug dosage injection on immune, normal, and tumor cells. It is also ensured that the presented controller does a robust performance on the parameter uncertainties. Moreover, to enhance the performance of the proposed system and for fast convergence, it is aimed to fine-tune the initial state of EKF optimally using a new Improved Gray Wolf Optimization (GWO) termed as Adaptive GWO (AGWO). Finally, analysis is held to validate the betterment of the presented model. Results: The outcomes, the proposed method has accomplished a minimal value of error with an increase in time, when evaluated over the compared models. Conclusions: Thus, the improvement of the proposed REFEKF-AGWO model is proved from the attained results.
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • SVNIT, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, Gujarat, India, 395007
  • SVNIT, Surat, Gujarat, India
Bibliografia
  • 1. Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019;13:961.
  • 2. Matsuda C, Ishiguro M, Teramukai S, Kajiwara Y, Fujii S, Kinugasa Y, et al. A randomised-controlled trial of 1-year adjuvant chemotherapy with oral tegafur-uracil versus surgery alone in stage II colon cancer: SACURA trial. Eur J Canc 2018;96: 54-63.
  • 3. Batmani Y, Khaloozadeh H. Optimal drug regimens in cancer chemotherapy: a multi-objective approach. Comput Biol Med 2013;43:2089-95.
  • 4. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Canc Drug Resist 2019;2:141-60.
  • 5. Rokhforoz P, Jamshidi AA, Sarvestani NN. Adaptive robust control of cancer chemotherapy with extended Kalman filter observer. Inf Med Unlocked 2017;8:1-7.
  • 6. Chen T, Kirkby NF, Jena R. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation. Comput Methods Prog Biomed 2012;108: 973-83.
  • 7. Paryad-zanjani S, Mahjoob MJ, Amanpour S, Kheirbakhsh R, Akhoundzadeh MH. A supplemental treatment for chemotherapy: control simulation using a mathematical model with estimated parameters based on in vivo experiment. IFAC-PapersOnLine 2016;49:277-82.
  • 8. Pouchol C, Clairambault J, Lorz A, Trelat E. Asymptotic analysis ´ and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J Math Pure Appl 2018;116:268-308.
  • 9. Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos: Interdiscipl J Nonlinear Sci 2019;29:083127.
  • 10. Matsuda C, Ishiguro M, Teramukai S, Kajiwara Y, Fujii S, Kinugasa Y, et al. A randomised-controlled trial of 1-year adjuvant chemotherapy with oral tegafur-uracil versus surgery alone in stage II colon cancer: SACURA trial. Eur J Canc 2018; 96:54-63.
  • 11. Toyooka S, Okumura N, Nakamura H, Nakata M, Yamashita M, Tada H, et al. A multicenter randomized controlled study of paclitaxel plus carboplatin versus oral uracil-tegafur as the adjuvant chemotherapy in resected non-small cell lung cancer. J Thorac Oncol 2018;13:699-706.
  • 12. Wu H, Hu H, Wan J, Li Y, Wu Y, Tang Y, et al. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem Eng J 2018;349:129-45.
  • 13. Gibbons A, Groarke AM. Coping with chemotherapy for breast cancer: asking women what work. Eur J Oncol Nurs 2018;35: 85-91.
  • 14. Jiang S, Liu Y, Huang L, Zhang F, Kang R. Effects of propofol on cancer development and chemotherapy: potential mechanisms. Eur J Pharmacol 2018;831:46-51.
  • 15. Sun B, Luo C, Cui W, Sun J, He Z. Chemotherapy agentunsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Contr Release 2017;264:145-59.
  • 16. Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Contr Release 2017;267:100-18.
  • 17. Abbasian M, Roudi MM, Mahmoodzadeh F, Eskandani M, Jaymand M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int J Biol Macromol, Available online. 2018;118: 1871-9.
  • 18. Bao T, Seidman AD, Piulson L, Vertosick E, Chen X, Vickers AJ, et al. A phase IIA trial of acupuncture to reduce chemotherapyinduced peripheral neuropathy severity during neoadjuvant or adjuvant weekly paclitaxel chemotherapy in breast cancer patients. Eur J Canc 2018;101:12-9.
  • 19. Kimmick GG, Li X, Steven T, Fleming SA, Sabatino JF, Wilson J, et al. Risk of cancer death by comorbidity severity and use of adjuvant chemotherapy among women with locoregional breast cancer. J Geriatr Oncol 2018;9:214-20.
  • 20. Kurt B, Kapucu S. The effect of relaxation exercises on symptom severity in patients with breast cancer undergoing adjuvant chemotherapy: an open label non-randomized controlled clinical trial. Eur J Integr Med, Available online, 3 August 2018;22:54-61.
  • 21. Lai X, Friedman A. Mathematical modeling in scheduling cancer treatment with combination of VEGF inhibitor and chemotherapy drugs. J Theor Biol 2019;462:490-8.
  • 22. Wu X, Liu Q, Zhang K, Cheng M, Xin X. Optimal switching control for drug therapy process in cancer chemotherapy. Eur J Contr 2018;42:49-58.
  • 23. Liang L, Luo H, He Q, You Y, Liang J. Investigation of cancerassociated fibroblasts and p62 expression in oral cancer before and after chemotherapy. J Cranio-Maxillofacial Surg 2018;46: 605-10.
  • 24. Khalili P, Vatankhah R. Derivation of an optimal trajectory and nonlinear adaptive controller design for drug delivery in cancerous tumor chemotherapy. Comput Biol Med 2019;109:195-206.
  • 25. Wu X, Liu Q, Zhang K, Cheng M, Xin X. Optimal switching control for drug therapy process in cancer chemotherapy. Eur J Contr 2018;42:49-58.
  • 26. Pouchol C, Clairambault J, AlexanderLorz, Trelat E. Asymptotic ´ analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J Math Pure Appl 2018;116:268-308.
  • 27. Rokhforoz P, Jamshidi AA, Sarvestani NN. Adaptive robust control of cancer chemotherapy with extended Kalman filter observer. Inf Med Unlocked 2017;8:1-7.
  • 28. Toyooka S, Okumura N, Nakamura H, Nakata M, Yamashita M, Tada H, et al. A multicenter randomized controlled study of paclitaxel plus carboplatin versus oral uracil-tegafur as the adjuvant chemotherapy in resected non–small cell lung cancer. J Thorac Oncol 2018;13:699-706.
  • 29. Schattler H, Ledzewicz U. Optimal control for mathematical models of cancer therapies. Springer; 2010.
  • 30. Mohite UL, Hirenkumar G. Robust controller for cancer chemotherapy dosage using nonlinear kernel-based error function. Bio Algorithm Med Syst 2020;17:20190056.
  • 31. Utkarsha. Non-linear kernel-based error function for extended Kalman filter oriented robust control of cancer chemotherapy. In Communication.
  • 32. Akhlaghi S, Zhou N, Huang Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. Systems and Control; 2017.
  • 33. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf optimizer. Adv Eng Software 2014;69:46-61.
  • 34. Wagh MB, Gomathi N. Improved GWO-CS algorithm-based optimal routing strategy in VANET. J Netw Commun Syst 2019;2:34-42.
  • 35. Rajakumar BR. Static and adaptive mutation techniques for genetic algorithm: a systematic comparative analysis. Int J Comput Sci Eng 2013;8:180-93.
  • 36. Rajakumarm BR. Impact of static and adaptive mutation techniques on the performance of Genetic Algorithm. Int J Hybrid Intell Syst 2013;10:11-22.
  • 37. Swamy SM, Rajakumar BR, Valarmathi IR. Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with Cauchy mutation. In: IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013). Red Hook, NY: Curran; 2015.
  • 38. George A, Rajakumar BR. APOGA: an adaptive population pool size based genetic algorithm. In: AASRI Procedia - 2013 AASRI Conference on Intelligent Systems and Control (ISC 2013). Vancouver, Canada: Elsevier Procedia; vol 4; 2013:288-96 pp.
  • 39. Rajakumar BR, George A. A new adaptive mutation technique for genetic algorithm. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) Coimbatore, India. Coimbatore: Institute of Electrical and Electronics Engineers ( IEEE ); vol 1-7; 2012:18-20 pp.
  • 40. Badr EM, Salam MA, Ahmed H. Optimizing support vector machine using the Gray Wolf optimizer algorithm for breast cancer detection; 2019.
  • 41. Roy RG. Rescheduling based congestion management method using hybrid Grey Wolf optimization - grasshopper optimization algorithm in power system. J Comput Mech Power Syst Contr 2019;2:9-18.
  • 42. Jadhav AN, Gomathi N. DIGWO: hybridization of dragonfly algorithm with improved Grey Wolf optimization algorithm for data clustering. Multimed Res 2019;2:1-11.
  • 43. Sreedharan NPN, Ganesan B, Raveendran R, Sarala P, Dennis B. Grey Wolf optimisation-based feature selection and classification for facial emotion recognition. IET Biom 2018;7: 490-9.
  • 44. Utkarsha. Robust controller for cancer chemotherapy dosage using non-linear kernel-based error function. In communication.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d927f19-afaa-49d3-b901-1fe33f4dd471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.