Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, we investigate queueing system M/G/∞ with non-homogeneous customers. By non-homogeneity we mean that each customer is characterized by some arbitrarily distributed random volume. The arriving customers appear according to a stationary Poisson process. Service time of a customer is proportional to his its volume. The system is unreliable, which means that all its servers can break simultaneously and then the repair period goes on for random time having an arbitrary distribution. During this period, customers present in the system and arriving to it are not served. Their service continues immediately after repair period termination. Time intervals of the system in good repair mode have an exponential distribution. For such system, we determine steady-state sojourn time and total volume of customers present in it distributions. We also estimate the loss probability for the similar system with limited total volume. An analysis of some special cases and some numerical examples are attached as well.
Rocznik
Tom
Strony
289--297
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
autor
- Institute of Computer Science. Cardinal Stefan Wyszyński University in Warsaw, Poland
autor
- Institute of Information Technology. Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
- [1] P.P. Bocharov, C. D’Apice, A.V. Pechinkin, and S. Salerno: Queueing Theory, VSP, Utrecht-Boston, 2004.
- [2] O. Tikhonenko, Computer Systems Probability Analysis, Akademicka Oficyna Wydawnicza EXIT, Warsaw, 2006 (In Polish).
- [3] M. Schwartz, Computer-communication Network Design and Analysis, Prentice-Hall, Englewood Cliffs, New York, 1977.
- [4] M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis, Addison-Wesley Publishing Company, New York, 1987.
- [5] E. Morozov, R. Nekrasova, L. Potakhina, and O. Tikhonenko, “Asymptotic analysis of queueing systems with finite buffer space”, In: Kwiecien, A., Gaj, P., Stera, P. (eds.) CN 2014, CCIS 431, Springer, Cham, 223–232 (2014).
- [6] O.M. Tikhonenko, “Destricted capacity queueing systems: determination of their characteristics”, Autom. Remote Control 58 (6), 969–972 (1997).
- [7] O.M. Tikhonenko and K.G. Klimovich, “Queuing systems for random-length arrivals with limited cumulative volume”, Problems of Information Transmission 37 (1), 70–79 (2001).
- [8] O.M. Tikhonenko, “Generalized Erlang problem for service systems with finite total capacity”, Problems of Information Transmission 41 (3), 243–253 (2005).
- [9] O.M. Tikhonenko, “Queuing systems with processor sharing and limited resources”, Autom. Remote Control, 71 (5), 803–815 (2010).
- [10] M. Ziółkowski, “M/G/n/0 Erlang queueing system with heterogeneous servers and non-homogeneous customers”, Bull. Pol. Ac.: Tech. 66 (1), 59–66 (2018).
- [11] O. Tikhonenko and M. Ziółkowski, “Single server queueing system with external and internal customers”, Bull. Pol. Ac.: Tech. 66 (4), 539–551 (2018).
- [12] O. Tikhonenko and M. Ziółkowski, “Queueing models of systems with non-homogeneous customers and their applications in computer science”, In: Proceedings of the IEEE 15th International Scientific Conference on Informatics “Informatics 2019”, Poprad 20-22 November 2019, 423–428 (2019).
- [13] A.M. Alexandrov and B.A. Katz, “Non-homogeneous demands flows service”, Izvestiya AN SSSR. Tekhnicheskaya Kibernetika 2, 47–53 (1973)(In Russian).
- [14] B. Sengupta, “The spatial requirements of an M/G/1 queue, or: How to design for buffer space”, In: Baccelli F., Fayolle G. (eds.), Modelling and Performance Evaluation Methodology. Lect. Notes in Contr. and Inf. Sci. 60, Springer, Heidelberg, 547–562 (1984).
- [15] O. Tikhonenko, “Queueing systems with common buffer: a theoretical treatment”, In: Kwiecien, A., Gaj, P., Stera, P. (eds.) CN 2011, CCIS 160, Springer, Heidelberg, 61–69 (2011).
- [16] M. Ziółkowski and O. Tikhonenko, “Multiserver queueing system with non-homogeneous customers and sectorized memory space”, In: Kwiecien, A., Gaj, P., Sawicki, M., Suchacka, G. (eds.) CN 2018, CCIS 860, Springer, Cham, 272–285 (2018).
- [17] S.F. Yashkov and A.S. Yashkova, “Processor sharing: A survey of the mathematical theory”, Autom. Remote Control 68 (9), 1662–1731 (2007).
- [18] O. Tikhonenko, M. Ziółkowski, and M. Kurkowski, “M/G/n/(0,V) Erlang queueing system with non-homogeneous customers, non-identical servers and limited memory space”, Bull. Pol. Ac.: Tech. 67 (3), 489–500 (2019).
- [19] O. Tikhonenko and M. Ziółkowski, “Queueing systems with non-homogeneous customers and infinite sectorized memory space”, In: Kwiecien, A., Gaj, P., Sawicki, M. (eds.) CN 2019. CCIS, vol. 1039, Springer, Cham, 316–329 (2019).
- [20] M.L. Abell and J.P. Braselton, The Mathematica Handbook, Elsevier, 1992.
- [21] Gia-Shie Liu, “Three m-failure group maintenance models for M/M/N unreliable queuing service systems”, Comput. Ind. Eng. 62 (4), 1011–1024 (2012).
- [22] M. Dawson, Python Programming for the Absolute Beginner, Cengage Learning, 2010.
- [23] S. Robinson, Simulation: The Practice of Model Development and Use, Palgrave Macmillan, 2014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d912f1d-683e-45d1-98a3-30dbe8973202