PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigations of mass transfer in annular gas-liquid flow in a microreactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation of mass transfer in gas-liquid annular flow in a microreactor. The microreactor had a meandered shape with a square cross-section of the channel (292×292 μm, hydraulic diameter 292 μm) and 250 mm in length. The rate of CO2 absorption from the CO2/N2 mixture in NaOH (0.1 M, 0.2 M, 0.7 M, 1.0 M and 1.5 M) water solutions was measured. Two velocities of gas flow and two velocities of liquid flow were used. In two cases a fully developed annular flow at the beginning of the channel was observed, whilst in two cases annular flow was formed only in about 2/3 of the microchannel length. Based on the measurements of CO2 absorption rate, the values of volumetric liquid – side mass transfer coefficients with the chemical reaction were determined. Then physical values of coefficients were found. Obtained results were discussed and their values were compared with the values predicted by literature correlations.
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. AbadieT., Aubin J., Legendre D., Xuereb C., 2012. Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels. Microfluid Nanofluid., 12, 355-369. DOI: 10.1007/s10404-011-0880-8.
  • 2. Abolhasani M., Singh M., Kumacheva E., Günter A., 2012. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents. Lab Chip, 12, 1611-1618. DOI: 10.1039/C2LC21043F.
  • 3. Barret P.V.L., 1966. Gas absorption on a sieve plate. Ph.D. Thesis, University of Cambridge.
  • 4. Churski K., Kamiński T.S., Jakiela S., Kamysz W., Barańska-Rybak W., Weibeld D.B., Garstecki P., 2012. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip, 12, 1629-1637. DOI: 10.1039/C2LC21284F.
  • 5. Commenge J.M., Obein T., Genin G., Framboisier X., Rode S., Schanen V., Pitiot P., Matlosz M., 2006. Gas- phase residence time distribution in a falling-film microreactor. Chem. Eng. Sci., 61, 597-604. DOI: 10.1016/j.ces.2005.07.015.
  • 6. Cygański P., Sobieszuk P., Pohorecki R., 2012. Pressure drop in two-phase gas-liquid (Taylor) flow. Chem. Proc. Eng., 33, 369-384. DOI: 10.2478/v10176-012-0033-y.
  • 7. Danckwerts P.V., 1970. Gas-Liquid Reactions. Mc Graw-Hill, New York. Ehrich H., Linke D., Morgenschweis K., Baerns M., Jahnish K., 2002. Application of microstructured reactor technology for the photochemical chlorination of alkylaromatics. Chimia, 56, 647-653. DOI:
  • 8. 10.2533/000942902777680063.
  • 9. Hecht K., Kraut M., 2010. Thermographic investigations of a microstructured thin film reactor for gas/liquid contacting. Ind. Eng. Chem. Res., 49, 10889-10896. DOI: 10.1021/ie1000431r.
  • 10. Hessel V., Angeli P., Gavriilidis A., Lowe H., 2005. Gas–liquid and gas–liquid–solid microstructured reactors: Contacting principles and applications. Ind. Eng. Chem. Res., 44, 9750-9769. DOI: 10.1021/ie0503139.
  • 11. Kashid M.N., Renken A., Kiwi-Minsker L., 2011. Gas-liquid and liquid-liquid mass transfer in microstructured reactors. Chem. Eng. Sci., 66, 3876-3897. DOI: 10.1016/j.ces.2011.05.015.
  • 12. Kolb A., Kraut M., Dittmeyer R., 2013. Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in microstructures cyclone type mixers. Chem. Eng. Sci., 101, 454-460. DOI: 10.1016/j.ces2013.07.008.
  • 13. Kreutzer M.T., Kapteijn F., Moulijn J.A., Heiszwolf J.J., 2005. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci., 60, 5895-5916. DOI: 10.1016/j.ces.2005.03.022.
  • 14. Malecha K., Golonka L.J., Bałdyga J., Jasińska M., Sobieszuk P., 2009. Serpentine microfluidic mixer made in LTCC. Sensors Actuators B, 143, 400-413. DOI: 10.1016/j.snb.2009.08.010.
  • 15. Pohorecki, R., Moniuk, W., 1988a. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem. Eng. Sci., 43, 1677-1684. DOI: 10.1016/0009-2509(88)85159-5.
  • 16. Pohorecki R., W. Moniuk W., 1988b. Plate efficiency in the process of absorption with chemical reaction – Experiments and example calculations. The Chem. Eng. J., 39, 37-46. DOI: 10.1016/0300-9467(88)80088-1. Pohorecki R., Moniuk W., 1991. Viscosity and density of sodium and potassium alkaline solutions.
  • 17. Hung. J. Ind. Chem., 19, 175-178. Pohorecki R., Sobieszuk P., Kula K., Moniuk W., Zieliński M., Cygański P., Gawiński P., 2008. Hydrodynamic regimes of gas–liquid flow in a microreactor channel. Chem. Eng. J., 2008, 135S, S185-S190. DOI: 10.1016/j.cej.2007.07.039.
  • 18. Saisorn S., Wongwises S., 2010. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels. Exp. Therm. Fluid. Sci., 34, 454-462. DOI:10.1016/j.expthermflusci.2009.02.006.
  • 19. Sobieszuk P., Cygański P., Pohorecki R., 2008. Volumetric mass transfer coefficient in a gas-liquid microreactor. Chem. Process Eng., 29, 651-661.
  • 20. Sobieszuk P., Pilarek M., 2012. Absorption of CO2 into perfluorinated gas carrier in the Taylor gas-liquid flow in a microchannel system. Chem. Process Eng., 33, 595-602. DOI: 10.2478/v10176-012-0049-3.
  • 21. Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., 2011. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel. Chem. Eng. Sci., 66, 6048-6056. DOI: 10.1016/j.ces.2011.08.029.
  • 22. Sobieszuk P., Ilnicki F., Pohorecki R., 2014. Contribution of liquid- and gas-side mass transfer coefficients to overall mass transfer coefficient in Taylor flow in a microreactor. Chem. Proc. Eng., 35, 35-45. DOI: 10.2478/cpe-2014-0003.
  • 23. Yao C.Q., Dong Z.Y., Zhao Y.C., Chen G.W., 2015. Gas-liquid flow and mass transfer in a microchannel under elevated pressures. Chem. Eng. Sci., 123, 137-145. DOI: 10.1016/j.ces.2014.11.005.
  • 24. Yue J., Chen G., Tuan Q., Luo L., Gonthier Y., 2007. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. Chem. Eng. Sci., 62, 2096-2108. DOI: 10.1016/j.ces2006.12.057.
  • 25. Zhang J., Burkle-Vitzthum V., Marquaire P.M., Wild G., Commenge J.M., 2011. Direct conversion of methane in formaldehyde at very short resistance time. Chem. Eng. Sci., 66, 6331-6340. DOI: 10.1016/j.ces2011.03.059.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d83d30b-21e8-4fe4-a6e7-8eb8487ce6b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.