PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Detecting and classifying media images of athletes using convolutional neural networks – case study: Individual sports images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sports image classification using neural networks and machine vision is a rapidly expanding field, with applications in highlight reel creation, performance analysis, and illegal play detection. We present an innovative structure for sports image classification using convolutional neural networks (CNNs) based on deep learning in this article. Boxing, Gymnastics, Swimming, Tennis, and Weight Lifting are five distinct sports that all fall under the umbrella of individual games. In terms of setting and attire, these various forms of athletic competition are very comparable. Specifically, the suggested deep learning model consists of 20-layers, among them, there are four CNN layers. The results show that the proposed model achieved a significant result in terms of accuracy, although the selected sports have similar characteristics to each other. For instance, boxing classification accuracy was 90.63%, gymnastics accuracy was 86.88%, swimming sport image classification achieved 94.06% accuracy, tennis classification accuracy is 88.13%, and the weight lifting was 89.06%, in the testing phase. The obtained results prove that the developed new sports image classification method is effective enough and has been improved.
Twórcy
  • College of Basic Education, University of Diyala, Diyala, Iraq
  • Department of Communications Engineering, College of Engineering, University of Diyala, Diyala, Iraq
  • Department of Electrical and Electronics Engineering, Cukurova University, Adana, Turkey
  • Department of Computer Techniques Engineering, Al Salam University College, Baghdad, Iraq
  • nstitute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • nstitute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • nstitute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Albawi S., Mohammed T. A., and Al-Zawi S., Understanding of a convolutional neural network, in 2017 International Conference on Engineering and Technology (ICET), 21–23 Aug. 2017, 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308186.
  • 2. Salman E. H., Taher M. A., Hammadi Y. I., Mahmood O. A., Muthanna A., and Koucheryavy A., An Anomaly Intrusion Detection for High-Density Internet of Things Wireless Communication Network Based Deep Learning Algorithms, Sensors, 2023; 23(1), 206, [Online]. Available: https://www.mdpi.com/1424-8220/23/1/206.
  • 3. Hussain A. H. A. et al., Urban traffic flow estimation system based on gated recurrent unit deep learning methodology for internet of vehicles, IEEE Access, 2023; 11, 58516–58531, https://doi.org/10.1109/ACCESS.2023.3270395.
  • 4. Yousif A. J. and Al-Jammas M. H. Real-time Arabic video captioning using CNN and transformer networks based on parallel implementation, Diyala Journal of Engineering Sciences, 03/07 2024; 17(1), 84–93, https://doi.org/10.24237/djes.2024.17108.
  • 5. Abbas H. I. and Abd A. N. Adaptive inverse neural network based DC motor speed and position control using FPGA, Diyala Journal of Engineering Sciences, 2018; 11(3), 71–78, https://doi.org/10.24237/djes.2018.11311.
  • 6. Al-Saffar B., Ali Y. H., Muslim A. M., and Ali H. A. ECG Signal Classification Based on Neural Network, in International Conference on Emerging Technologies and Intelligent Systems, Cham: Springer International Publishing, September 202; 23–11.
  • 7. Saad A., Sheikh U. U., and Moslim M. S. Developing convolutional neural network for recognition of bone fractures in x-ray images, Advances in Science and Technology. Research Journal, 2024; 18(4), 228–237, https://doi.org/10.12913/22998624/188656.
  • 8. Falih B. S., Ali Y. H., Alabbas A. R., and Arica S. Optimising yield estimation for grapes: utilising the sliding window technique for visual counting of bunches and berries, Pakistan Journal of Agricultural Sciences, 2024; 61(2).
  • 9. Al-Saffar B., Arica S., and Tangolar S. Automatic counting of grapes from vineyard images, Pakistan Journal of Agricultural Sciences, May 2022; 59(3).
  • 10. Falih B. S., Gierz Ł., and Al-Sammarraie M.A.J. fruit classification by assessing slice hardness based on rgb imaging. Case study: apple slices, J. Appl. Math. Comput. Mech., 2024; 23(3), 7–18, https://doi.org/10.17512/jamcm.2024.3.01.
  • 11. Falih, B. S., Gierz, Ł. A., and Al-Zaidi, G. A. Detecting clustered fruits using a hybrid of convolutional neural networks and machine learning classifiers – Case study: Grapes. Adv. Sci. Technol. Res. J. 2024; 19(1), 1–9.
  • 12. Al-Saffar B., Al-Abbas A. R., Özel S. A. A comparative study on the recognition of English and Arabic handwritten digits based on the combination of transfer learning and classifier, In International Conference on Emerging Technologies Intelligent Systems, Cham: Springer International Publishing, September 2022; 95–107.
  • 13. Taha Ahmed S. and Malallah Kadhem S. Using machine learning via deep learning algorithms to diagnose the lung disease based on chest imaging: A survey, International Journal of Interactive Mobile Technologies (iJIM), 08/23 2021; 15(16), 95–112, https://doi.org/10.3991/ijim.v15i16.24191.
  • 14. Ahmed S. T. and Kadhem S. M. Early Alzheimer’s disease detection using different techniques based on microarray data: A review, International Journal of Online and Biomedical Engineering (iJOE), 2022; 18(4), 106–126, https://doi.org/10.3991/ijoe.v18i04.27133.
  • 15. Nogay, H. S., Akinci, T. C., Yilmaz, M. Comparative Experimental Investigation and Application of Five Classic Pre-Trained Deep Convolutional Neural Networks via Transfer Learning for Diagnosis of Breast Cancer. Advances in Science and Technology Research Journal, 2021; 15(3), 1–8. https://doi.org/10.12913/22998624/137964.
  • 16. Abdullah A. J., Hasan T. M., and Waleed J. An expanded vision of breast cancer diagnosis approaches based on machine learning techniques, in 2019 International Engineering Conference (IEC), 23–25 June 2019; 177–181, https://doi.org/10.1109/IEC47844.2019.8950530.
  • 17. Saad A., Muhanad Hameed A., and Jumana W. Skin cancer classification dermatologist-level based on deep learning model, Acta Scientiarum. Technology, 12/19 2022; 45(1), https://doi.org/10.4025/actasci-technol.v45i1.61531.
  • 18. Jawad A. T., Maaloul R., and Chaari L. A comprehensive survey on 6G and beyond: Enabling technologies, opportunities of machine learning and challenges, Computer Networks, 2023/12/01; 237, 110085, https://doi.org/10.1016/j.comnet.2023.110085.
  • 19. Lecun Y., Bottou L., Bengio Y., and Haffner P. Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998; 86(11), 2278–2324, https://doi.org/10.1109/5.726791.
  • 20. Krizhevsky A., Sutskever I., and Hinton G. E. Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, 2012; 25, https://doi.org/10.1145/3065386.
  • 21. Deng J., Dong W., Socher R., Li L. J., Kai L. and Li F.-F. ImageNet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 20–25 June 2009; 248–255, https://doi.org/10.1109/CVPR.2009.5206848.
  • 22. Szegedy C. et al. Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7–12 June 2015; 1–9, https://doi.org/10.1109/CVPR.2015.7298594.
  • 23. Szegedy C., Vanhoucke V., Ioffe S., Shlens J., and Wojna Z. Rethinking the Inception Architecture for Computer Vision, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, 2818–2826, https://doi.org/10.1109/CVPR.2016.308.
  • 24. Ioffe S. and Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift, presented at the Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 2015.
  • 25. Szegedy C., Ioffe S., Vanhoucke V. and Alemi A. A. Inception-v4, inception-ResNet and the impact of residual connections on learning, presented at the Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017.
  • 26. Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
  • 27. He K., Zhang X., Ren S., and Sun J. Deep Residual Learning for Image Recognition, Los Alamitos, CA, USA: IEEE Computer Society, 2016/06; 770–778, https://doi.org/10.1109/CVPR.2016.90.
  • 28. Huang G., Liu Z., Maaten L. V. D., and Weinberger K. Q. Densely Connected Convolutional Networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21–26 July 2017, 2261–2269, https://doi.org/10.1109/CVPR.2017.243.
  • 29. Xie S., Girshick R., Dollár P., Tu Z., and He K. Aggregated Residual Transformations for Deep Neural Networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21–26 July 2017; 5987–5995, https://doi.org/10.1109/CVPR.2017.634.
  • 30. Khan A., Sohail A., and Ali A. A new channel boosted convolutional neural network using transfer learning, arXiv preprint arXiv:1804.08528, 2018.
  • 31. Tan M. and Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, presented at the Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, 2019. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html.
  • 32. Ji R., Yao H., Xu P., and Zhang Z. Sports image classification based on hierarchical multi-svm bagging network, in Information Sciences 2007; 973–979.
  • 33. Farhad M. Y., Hossain S., Tanvir M. R. K., and Chowdhury S. A. Sports-Net18: Various Sports Classification using Transfer Learning, in 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), 19–20 Dec. 2020; 1–4, https://doi.org/10.1109/STI50764.2020.9350415.
  • 34. Russo M. A., Filonenko A., and Jo K. H. Sports Classification in Sequential Frames Using CNN and RNN, in 2018 International Conference on Information and Communication Technology Robotics (ICT-ROBOT), 6–8 Sept. 2018; 1–3, https://doi.org/10.1109/ICT-ROBOT.2018.8549884.
  • 35. Joshi K., Tripathi V., Bose C., and Bhardwaj C. Robust sports image classification using inceptionV3 and neural networks, Procedia Computer Science, 2020/01/01; 167, 2374–2381, https://doi.org/10.1016/j.procs.2020.03.290.
  • 36. Podgorelec V., Pečnik Š., and Vrbančič G. Classification of Similar Sports Images Using Convolutional Neural Network with Hyper-Parameter Optimization, Applied Sciences, 2020; 10(23), 8494, [Online]. Available: https://www.mdpi.com/2076-3417/10/23/8494.
  • 37. Storn R. and Price K. Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report, TR-95.012, ICSI, 1995.
  • 38. Storn R. and Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997/12/01; 11(4), 341–359, https://doi.org/10.1023/A:1008202821328.
  • 39. Chen Y. Sports sequence images based on convolutional neural network, Mathematical Problems in Engineering, 2021; 2021(1), 3326847, https://doi.org/10.1155/2021/3326847.
  • 40. Gao M., Cai W., and Liu R. [Retracted] AGTH-Net: Attention-Based Graph Convolution-Guided Third-Order Hourglass Network for Sports Video Classification, Journal of Healthcare Engineering, 2021; 2021(1), 8517161, https://doi.org/10.1155/2021/8517161.
  • 41. Liu J. Convolutional Neural Network-Based Human Movement Recognition Algorithm in Sports Analysis, (in English), Frontiers in Psychology, Original Research June-25 2021; 12, https://doi.org/10.3389/fpsyg.2021.663359.
  • 42. Ramesh M. and Mahesh K. Sports video classification framework using enhanced threshold based keyframe selection algorithm and customized CNN on UCF101 and Sports1-M Dataset, Computational Intelligence and Neuroscience, 2022; 1, 3218431, https://doi.org/10.1155/2022/3218431.
  • 43. Idrees H. et al. The thumos challenge on action recognition for videos “in the wild”, Computer Vision and Image Understanding, 2017; 155, 1–23.
  • 44. Li X. and Ullah R. An image classification algorithm for football players’ activities using deep neural network, Soft Comput., 2023; 27(24), 19317–19337, https://doi.org/10.1007/s00500-023-09321-3.
  • 45. Wang B. and Rezaei Sofla A. Solution for sports image classification using modified MobileNetV3 optimized by modified battle royal optimization algorithm, Heliyon, 2023; 9(11), e21603, https://doi.org/10.1016/j.heliyon.2023.e21603.
  • 46. Xiangchen L. Comparison of Four Convolutional Neural Network-Based Algorithms for Sports Image Classification, in Proceedings of the 2023 International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2023), 2024/02/14 2024: Atlantis Press, 178–186, https://doi.org/10.2991/978-94-6463-370-2_20.
  • 47. He K., Zhang X., Ren S., and Sun J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, in 2015 IEEE International Conference on Computer Vision (ICCV), 7–13 Dec. 2015; 1026–1034, https://doi.org/10.1109/ICCV.2015.123.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d810c1f-20d8-48e6-a0fb-9bada3ba0d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.