PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant proteins and polysaccharides in microencapsulation of essential oils for development of functional food sector

Identyfikatory
Warianty tytułu
PL
Białka roślinne i polisacharydy w mikrokapsułkowaniu olejków eterycznych dla rozwoju sektora żywności funkcjonalnej
Języki publikacji
EN
Abstrakty
EN
The escalating interest in functional foods among consumers, coupled with their heightened nutritional consciousness, is driving the need for innovative strategies for product development in the food industry. Essential oils, possessing healthpromoting benefits, antimicrobial and antioxidant activities, present a promising avenue for the functional food industry. However, their high volatility, susceptibility to oxidation, and strong flavor and aroma impede their large-scale use. Microencapsulation, particularly spray drying, is a well-established technique to circumvent these issues. Nevertheless, the high risk of essential oil evaporation during the process at elevated temperatures requires alternative encapsulation method. One promising solution is the application of complex coacervation between plant proteins and polysaccharides, which not only enables encapsulation at room temperature but also guarantees efficient retention of essential oils and protection from environmental degradation during storage. This review introduces the definition of functional food and addresses the possibility of using protein-polysaccharide complexes for essential oil encapsulation and highlights the potential of complex coacervation as a new strategy for the development of this food sector.
PL
Rosnące zainteresowanie żywnością funkcjonalną wśród konsumentów, w połączeniu z ich zwiększoną świadomością żywieniową, napędza potrzebę innowacyjnych strategii rozwoju produktów w przemyśle spożywczym. Olejki eteryczne, posiadające właściwości prozdrowotne, przeciwdrobnoustrojowe i przeciwutleniające, stanowią obiecującą drogę dla przemysłu żywności funkcjonalnej. Jednak ich duża lotność, podatność na utlenianie oraz silny smak i aromat utrudniają ich wykorzystanie na dużą skalę. Mikrokapsułkowanie, zwłaszcza suszenie rozpyłowe, jest dobrze ugruntowaną techniką obejścia tych problemów. Niemniej jednak wysokie ryzyko odparowania olejku eterycznego podczas procesu prowadzonego w podwyższonych temperaturach wymaga alternatywnych metod kapsułkowania. Obiecującym rozwiązaniem jest zastosowanie złożonej koacerwacji białek roślinnych i polisacharydów, która nie tylko umożliwia enkapsulację w temperaturze pokojowej, ale także gwarantuje skuteczną retencję olejków eterycznych i ochronę przed degradacją środowiska podczas przechowywania. Niniejszy przegląd wprowadza definicję żywności funkcjonalnej i dotyczy możliwości wykorzystania kompleksów białkowopolisacharydowych do enkapsulacji olejków eterycznych i podkreśla potencjał kompleksowej koacerwacji jako nowej strategii rozwoju sektora tej żywności.
Rocznik
Strony
20--23
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Warsaw University of Life Sciences, Institute of Human Nutrition Sciences, Department of Technique and Food Development, Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Human Nutrition Sciences, Department of Technique and Food Development, Warsaw, Poland
Bibliografia
  • [1] Abd Manaf M., J. Jai, R. Raslan, I. Subuki, A.N. Mustapa. 2015. „Microencapsulation Methods of Volatile Essential Oils – A Review”. Advanced Materials Research 1113, 679-683. DOI: 10.4028/www.scientific. net/amr.1113.679.
  • [2] Abd Rashed A., D.N.G. Rathi. 2021. „Bioactive components of Salvia and their potential antidiabetic properties: A review”. Molecules 26 (10) : 1-28. DOI: 10.3390/molecules26103042.
  • [3] Adiuvo Investments. 2018. https://pandl.pl/wp-content/uploads/tl_files/raporty%20i%20prezentacje/Adiuvo_19.10.17.pdf.
  • [4] Allegra A., A. Tonacci, G. Pioggia, C. Musolino, S. Gangemi. 2020. „Anticancer activity of Rosmarinus officinalis L.: Mechanisms of action and therapeutic potentials”. Nutrients 12 (6) : 1-24. DOI: 10.3390/nu12061739.
  • [5] Almas I., E. Innocent, F. Machumi, W. Kisinza. 2021. „Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania”. Scientific African 12 : 1-7. DOI: 10.1016/J. SCIAF.2021.E00758.
  • [6] Amani F., A. Azadi, A. Rezaei, M. S. Kharazmi, S. M. Jafari. 2022. „Preparation of soluble complex carriers from Aloe vera mucilage/gelatin for cinnamon essential oil: Characterization and antibacterial activity”. Journal of Food Engineering 334 : 1-20. DOI: 10.1016/j.jfoodeng.2022.111160.
  • [7] Asioli D., J. Aschemann-Witzel, V. Caputo, R. Vecchio, A. Annunziata, T. Naes, P. Varela. 2017. „Making sense of the „clean label” trends: A review of consumer food choice behavior and discussion of industry implications”. Food Research International 99 : 58-71. DOI: 10.1016/j. foodres.2017.07.022.
  • [8] Bento R., E. Pagan, D. Berdejo, R.J. de Carvalho, S. Garcia-Embid, F. Maggi, M. Magnani, L. Evandro de Souza, D. Garcia-Gonzalo, R. Pagan. 2020. „Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices”. International Journal of Food Microbiology 331 : 1-10. DOI: 10.1016/j.ijfoodmicro. 2020.108786.
  • [9] Blažeković B., W. Yang, Y. Wang, C. Li, M. Kindl, S. Pepeljnjak, S. Vladimir-Knežević. 2018. „Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula × intermedia ‘Budrovka’ and L. angustifolia cultivated in Croatia”. Industrial Crops and Products 123 : 173-182. DOI: 10.1016/j. indcrop.2018.06.041.
  • [10] Błaszczak A., W. Grześkiewicz. 2014. „Żywność funkcjonalna – szansa czy zagrożenie dla zdrowia?” Medycyna Ogólna i Nauki o Zdrowiu 20 (2) : 214-221.
  • [11] Bordon M.G., A.J. Paredes, N.M. Camacho, M.C. Penci, A. Gonzalez, S.D. Palma, M.L. Martinez. 2021. „Formulation, spray-drying and physicochemical characterization of functional powders loaded with chia seed oil and prepared by complex coacervation”. Powder Technology 391 : 479-493. DOI: 10.1016/j. powtec.2021.06.035.
  • [12] Carvalho F., A.P. Duarte, S. Ferreira. 2021. „Antimicrobial activity of Melissa officinalis and its potential use in food preservation”. Food Bioscience 44 : 1-14. DOI: 10.1016/j.fbio.2021.101437.
  • [13] Dagni A., S.C. Hegheș, R. Suharoschi, O.L. Pop, A. Fodor, R. Vulturar, A. Cozma, O.A. Filali, D.C. Vodnar, A. Soukri, B. El Khalfi. 2022. „Essential oils from Dysphania genus: Traditional uses, chemical composition, toxicology, and health benefits”. Frontiers in Pharmacology 13 : 1-15. DOI: 10.3389/fphar.2022.1024274.
  • [14] Evans M., I. Ratcliffe, P.A. Williams. 2013. „Emulsion stabilisation using polysaccharide–protein complexes”. Current Opinion in Colloid & Interface Science 18 (4) : 272-282. DOI: 10.1016/j.cocis.2013.04.004.
  • [15] Falleh H., M. Benjemaa, M.A. Neves, H. Isoda, M. Nakajima, R. Ksouri. 2021. „Formulation, physicochemical characterization, and anti- E. coli activity of food-grade nanoemulsions incorporating clove, cinnamon, and lavender essential oils”. Food Chemistry 359 : 1-7. DOI: 10.1016/j.foodchem.2021.129963.
  • [16] Falleh H., M. Benjemaa, K. Djeblai, S. Abid, M. Saada, R. Ksouri. 2019. „Application of the mixture design for optimum antimicrobial activity: Combined treatment of Syzygium aromaticum, Cinnamomum zeylanicum, Myrtus communis, and Lavandula stoechas essential oils against Escherichia coli”. Journal of Food Processing and Preservation 43 : 1-11. DOI: 10.1111/jfpp.14257.
  • [17] Food Standard Agency: https://www.food.gov.uk/business-guidance/approved-addtives-and-enumbers. [
  • [18] Gholamipourfard K., M. Salehi, E. Banchio. 2021. „Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications”. South African Journal of Botany 141 : 183-195. DOI: 10.1016/j.sajb.2021.05.014 .
  • [19] Giampieri F., D. Cianciosi, T.Y. Forbes-Hernandez. 2020. „Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits”. Food Frontiers 1 (3) : 276-295. DOI: 10.1002/fft2.37.
  • [20] Hernandez-Nava R., A. Lopez-Malo, E. Palou, N. Ramirez-Corona, M.T. Jimenez-Munguia. 2020. „Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying”. Food Hydrocolloids 109 : 1-36. DOI: 10.1016/j. foodhyd.2020.106077.
  • [21] Jannasari N., F. Milad, S.J. Moshtaghian, A. Abbaspourrad. 2019. „Microencapsulation of vitamin D using gelatin and cress seedmucilage: Production, characterization and in vivo study”. International Journal of Biological Macromolecules 129 : 972-979. DOI: 10.1016/j.ijbiomac.2019.02.096.
  • [22] Karagozlu M., B. Ocak, O. Ozdestan-Ocak. 2021. ”Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil”. Food and Bioprocess Technology 14 (7) : 1231–1243. DOI: 10.1007/s11947-021-02633-y.
  • [23] Korbutowicz T. 2018. „Żywność funkcjonalna na rynku światowym”. Gospodarka regionalna i międzynarodowa 53 (2) : 1-12, DOI: 10.18276/sip.2018.53/2-16.
  • [24] Kunicka-Styczyńska A. 2016. „Olejki eteryczne jako alternatywa dla syntetycznych konserwantów żywności – praca przeglądowa”. W Innowacyjne rozwiązania w technologii żywności i żywieniu człowieka, 175-184. Krakow: Oddział Małopolski Polskiego Towarzystwa Technologów Żywności.
  • [25] Leneveu-Jenvrin C., A. Aboudia, S. Assemat. F. Remize. 2022. „A three-step approach to assess efficacy of alternative chemical treatments to preserve fresh fruit juices: Application to pineapple (Ananas comosus „Queen Victoria”)”. LWT 155 (1) : 1-8. DOI: 10.1016/j.lwt.2021.112959.
  • [26] Li X., T. He, X. Wang, M. Shen, X. Yan, S. Fan, L. Wang, X. Wang, X. Xu, H. Sui, G. She. 2019. „Traditional uses, chemical constituents and biological activities of plants from the genus Thymus”. Chemistry & Biodiversity 16 (9) : 1-33. DOI: 10.1002/cbdv.201900254.
  • [27] Mahanta B.P., P.K. Bora, P. Kemprai, G. Borah, M. Lal, S. Haldar. 2021. „Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality”. Food Research International 145 : 1-18. DOI: 10.1016/j.foodres.2021.110404.
  • [28] Maleš I., S. Pedisić, Z. Zorić, I. Elez-Garofulić, M. Repajić, L. You, S. Vladimir-Knežević, D. Butorac, V. Dragović-Uzelac. 2022. „The medicinal and aromatic plants as ingredients in functional beverage production”. Journal of Functional Foods 96 : 1-20. DOI: 10.1016/j.jff.2022.105210.
  • [29] Meiguni M.S.M., M. Salami, K. Rezaei, M.A. Aliyari, S.B. Ghaffari, Z. Emam-Djomeh, J.F. Kennedy, A. Ghasemi. 2023. „Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation”. International Journal of Biological Macromolecules 224 : 170-180. DOI: 10.1016/j.ijbiomac.2022.10.113.
  • [30] Molet-Rodriguez A., A. Turmo-Ibarz, L. Salvia-Trujillo, O. Martin-Belloso. 2021. „Incorporation of antimicrobial nanoemulsions into complex foods: A case study in an apple juice-based beverage”. LWT 141 : 1-11. DOI: 10.1016/j.lwt.2021.110926.
  • [31] Muhoza B., S. Xia, X. Wang, X. Zhang, Y. Li, S. Zhang. 2022. „Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications”. Critical Reviews in Food Science and Nutrition 62 (5) : 1363-1382. DOI: 10.1080/10408398.2020.1843132.
  • [32] Naimi M., F. Vlavcheski, H. Shamshoum, E. Tsiani. 2017. „Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives”. Nutrients 9 (9) : 1-19. DOI: 10.3390/nu9090968.
  • [33] Napiórkowska A., M.A. Kurek. 2022. „Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review”. Molecules 27 (16) : 1-18. DOI: 10.3390/molecules27165142.
  • [34] Otalora M.C., J.A.G. Castano, A. Wilches-Torres. 2019. „Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica”. LWT 112 : 1-6. DOI: 10.1016/j.lwt.2019.06.001.
  • [35] Patrignani F., L. Siroli, G. Braschi, R. Lanciotti. 2020. „Combined use of natural antimicrobial based nanoemulsions and ultra-high pressure homogenization to increase safety and shelf life of apple juice”. Food Control 111 : 1-36. DOI: 10.1016/j.foodcont.2019.107051.
  • [36] Pham L.B., B. Wang, B. Zisu, T. Truong, B. Adhikari. 2020. ”Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates”. Food Hydrocolloids 107 : 1-12. DOI: 10.1016/j.foodhyd.2020.105944.
  • [37] Plati F., A. Paraskevopoulou. 2023. „Hemp protein isolate – gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate – gum Arabic system”. Food Hydrocolloids 136 DOI: 10.1016/j.foodhyd.2022.108284.
  • [38] Qianyu Y., N. Georges, C. Selomulya. 2018. „Microencapsulation of active ingredients in functional foods: From research stage to commercial food products”. Trends in Food Science & Technology 78 : 167-179. DOI: 10.1016/j.tifs.2018.05.025.
  • [39] Qiu L., M. Zhang, B. Adhikari, Chang, L. 2022. „Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules”. Food Hydrocolloids 124 (4) : 1-14. DOI: 10.1016/j.foodhyd.2021.107366.
  • [40] Rashan L., F.L. Hakkim, M. Idrees, M. Essa, T. Velusamy, M. Al-Baloshi, B. Al-Bulushi, A. Al Jabri, M. Alrizeiki, G. Guillemin, S. S. Hasson. 2019. ”Boswellia Gum Resin and Essential Oils: Potential Health Benefits − An Evidence Based Review”. International Journal of Nutrition, Pharmacology, Neurological Diseases 9 (2) : 53-71. DOI: 10.4103/ijnpnd.ijnpnd_11_19.
  • [41] Rojas-Moreno S., F. Cardenas-Bailon, G. Osorio-Revilla, T. Gallardo-Velazquez, J. Proal-Najera. 2017. „Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil”. Journal of Food Measurement and Characterization 12 : 650-660. DOI: 10.1007/s11694-017-9678-z.
  • [42] Sanguansri L., M. A. Augustin. 2010. „Microencapsulation in Functional Food Product Development”. W Functional Food Product Development 1-23. Blackwell Publishing Ltd DOI: 10.1002/9781444323351.ch1.
  • [43] Sousa V.I., J.F. Parente, J.F. Marques, M.A. Forte, C.J. Tavares. 2022. „Microencapsulation of Essential Oils: A Review”. Polymers 14 (9) : 1-42. DOI: 10.3390/polym14091730.
  • [44] Tavares L., C.P.Z. Norena. 2020. ”Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization”. Food and Bioprocess Technology 13 : 1405-1420. DOI: 10.1007/s11947-020-02480-3.
  • [45] Unuofin J.O., N.P. Masuku, O.K. Paimo, S.L. Lebelo. 2021. „Ginger from farmyard to town: Nutritional and pharmacological applications”. Frontiers in Pharmacology 12 : 1-18. DOI: 10.3389/fphar.2021.779352.
  • [46] Valkova V., H. Ďuranova, A. Falcimaigne-Cordin, C. Rossi, F. Nadaud, A. Nesterenko, M. Moncada, M. Orel, E. Ivanišova, Z. Chlebova, L. Gabriny, M. Kačaniova. 2022. „Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study”. Foods 11 (15) : 1-16. DOI: 10.3390/foods11152267.
  • [47] Visiongain. 2020. Functional Foods Market Report 2020-2030 https://www.visiongain.com/report/functional-foods-market-report-2020-2030/?currency=EUR.
  • [48] Yang X., N. Gao, L. Hu, J. Li, Y. Sun. 2015. „Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation”. Journal of Food Engineering 161 : 87-93. DOI: 10.1016/j.jfoodeng.2015.03.027.
  • [49] Zhi-Jing N., X. Wang, Y. Shen, K. Thakur, J. Han, J.G. Zhang, F. Hu, Z.J. Wei. 2021. „Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils”. Trends in Food Science & Technology 110 : 78-89. DOI: 10.1016/j.tifs.2021.01.070.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d76fcc3-adcc-464e-9a24-baf99d6aed5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.