LI Międzyuczelniana Konferencja Metrologów

MKM 2019

Opole - Moszna, 23-25 września 2019

doi: 10.32016/1.66.04

ANALIZA DYNAMIKI IMITATORA DUŻYCH REZYSTANCJI O STRUKTURZE UKŁADU TYPU T

Janusz GUZIK¹, Adam PILŚNIAK²

1. Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki tel.: 32 237 29 91, e-mail: janusz.guzik@polsl.pl

2. Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki tel.: 32 237 26 54, e-mail: adam.pilsniak@polsl.pl

Streszczenie: W pracy przedstawiono opis uogólniony modelu matematycznego dynamiki pasywnego imitatora dużych rezystancji (o wartości rzędu TΩ) w układzie typu T bazującym na przekształceniu "gwiazda-trójkąt". Przedstawiono problemy z zastosowania rezystorów wysokoomowych do budowy imitatora.

Z punktu widzenia dynamiki te rezystory są układami inercyjnymi o stałych czasowych nawet rzędu (100 ÷ 1000) s. Wskazano warunki minimalizacji występujących stałych czasowych oraz podano optymalne warianty struktur imitatorów. Są one stosowane do sprawdzania wskazań mierników dużych rezystancji, bazujących na przetwarzaniu prądu.

Słowa kluczowe: imitator dużych rezystancji, dwójnik typu *RC*, rezystor wysokoomowy, stała czasowa rezystora wysokomowego.

1. WSTĘP

Do wzorcowania przyrządów np. teraomomierzy, których metoda pomiaru polega na przetwarzaniu prądu, stosuje się wzorce dużych rezystancji pracujące jako imitatory. Odtwarzają one pojedyncze wartości rezystancji połączonych w układzie typu T, bazującym na przekształceniu "gwiazda-trójkąt" [1, 2, 3]. To umożliwia imitację dużych rezystancji, nawet do wartości rzędu 10^{16} Ω [4].

Przykładowo, na rysunku 1a zamieszczono widok jednego z imitatorów dużych rezystancji serii 9337 firmy Guildline Instruments. Natomiast jego podstawowy schemat połączeń pokazano na rysunku 1b, a typowe parametry metrologiczne analizowanej serii imitatorów zamieszczono w tablicy 1.

Analizowany układ imitatora rysunek 1b_składa się z trzech rezystorów R_i , R_o i R_d w układzie T. Wykorzystując przekształcenie "gwiazda-trójkąt" otrzymuje się de facto zależność pozwalającą obliczyć rezystancję R_{SO} :

$$R_{SO} = R_i + R_o + \frac{R_i R_o}{R_d} \approx \frac{R_i R_o}{R_d}$$
(1)

której wartość wynika z zastosowanego uproszczenia i jest znana z błędem δ_{SO} :

$$\delta_{SO} = -\frac{R_i + R_o}{R_{SO}} \cdot 100 \ \%$$
 (2)

9337 Series Layout

Rys. 1. Widok imitatora 10 TΩ typu 9337 – 1T firmy Guildline Instruments (a) i jego podstawowy schemat połączeń (b) [4]

Tablica 1. Typowe parametry metrologiczne imitatorów dużych rezystancji firmy Guildline Instruments [4]

Тур	Wartość nominalna [TΩ]	Tolerancja [ppm]	Stabilność [ppm / rok]
9337 – 1T	1	1000	500
9337 – 10T	10	3000	750
9337 – 100T	100	5000	1000
9337 – 1P	1000	2 %	2000
9337 – 10P	100000	30 %	2 %

Jeśli w celu zilustrowania błędu δ_{SO} następujące równości $R_i = R_o = R$ i $R_d = R / k$, gdzie k jest pewną stałą imitacji, to po przekształceniach wzorów (1) – (2) otrzymuje się (tab.2):

$$\delta_{so} = -\frac{2}{2+k} \cdot 100 \% \approx -\frac{2}{k} \cdot 100 \%$$
(3)

Tablica 2. Zależność wartości błędu δ_{SO} od stałej imitacji k w przypadku $R_i = R_o = R$ i $R_d = R/k$

Parametr	$k = 10^4$	$k = 10^5$	$k = 10^{6}$
R_{SO}/R	10 ⁴	10 ⁵	10^{6}
δ_{SO} [%]	0,02	0,002	0,0002

Analizując wartości błędu δ_{SO} widać, że jest on dominujący w warunkach małych wartości stałej imitacji k, np. jeśli dla k = 1 ($\delta_{SO} = -67\%$) lub k = 10 ($\delta_{SO} = -17\%$)i, to wtedy należy uwzględnić ten błąd systematyczny wprowadzając odpowiednią poprawkę.

2. UOGÓLNIONY MODEL MATEMATYCZNY DYNAMIKI IMITATORA DUŻYCH REZYSTANCJI

Zastosowanie do budowy imitatorów wysokoomowych rezystorów powoduje, że charakteryzują się one stałą czasową rzędu nawet (100 ÷ 1000) s na przyłożone napięcie.

Rezystancje takich rezystorów (tu: R_i , R_o i R_d) opisane są następującymi zależnościami:

a) w postaci czasowej [5]

$$R_{i}(t) = R_{i} \frac{1}{1 + \frac{R_{i}}{R} e^{-\frac{t}{R_{ai}C_{ai}}}}$$
(4a)

$$R_o(t) = R_o \frac{1}{1 + \frac{R_o}{R_{ao}} e^{-\frac{t}{R_{ao}C_{ao}}}}$$
(4b)

$$R_d(t) = R_d \frac{1}{1 + \frac{R_d}{R_{ad}} e^{-\frac{t}{R_{ad}C_{ad}}}}$$
(4c)

b) w postaci operatorowej

$$Z_{i}(s) = R_{i} \frac{1 + sR_{ai}C_{ai}}{1 + s(R_{i} + R_{ai})C_{ai}}$$
(5a)

$$Z_{o}(s) = R_{o} \frac{1 + sR_{ao}C_{ao}}{1 + s(R_{o} + R_{ao})C_{ao}}$$
(5b)

$$Z_{d}(s) = R_{d} \frac{1 + sR_{ad}C_{ad}}{1 + s(R_{d} + R_{ad})C_{ad}}$$
(5c)

Wtedy to zamiast relacji (1) otrzymuje się postać:

a) czasową, daną wzorem (6a):

$$\frac{R_{SO}(t)}{\frac{R_{i}R_{o}}{R_{d}}} = \frac{1 + \frac{R_{d}}{R_{ad}}e^{-\frac{t}{R_{ad}C_{ad}}}}{\left(1 + \frac{R_{i}}{R_{ai}}e^{-\frac{t}{R_{ai}C_{ai}}}\right)\left(1 + \frac{R_{o}}{R_{ao}}e^{-\frac{t}{R_{ao}C_{ao}}}\right)}$$

b) operatorową, daną wzorem (6b):

$$\frac{Z_{SO}(s)}{\frac{R_i R_0}{R_d}} = \frac{\left[1 + sR_{ai}C_{ai}\right]\left[1 + sR_{a0}C_{a0}\right]\left[1 + s(R_d + R_{ad})C_{ad}\right]}{\left[1 + s(R_i + R_{ai})C_{ai}\right]\left[1 + s(R_0 + R_{a0})C_{a0}\right]\left[1 + sR_{ad}C_{ad}\right]}$$

Odpowiednie symbole zastosowane we wzorach (4a) – (4c), (5a) – (5c) i (6a) – (6b) oznaczają tutaj (odpowiednio) wartości rezystancji: $R_i = R_i(t \rightarrow +\infty)$, R_o $= R_o(t \rightarrow +\infty)$ i $R_d = R_d(t \rightarrow +\infty)$ oraz wartości stałych czasowych $R_{ai}C_{ai}$, $R_{ao}C_{ao}$ i $R_{ad}C_{ad}$ gałęzi, będącej szeregowym połączeniem elementów *RC*, modelującej zjawiska absorpcyjne rezystora wysokomowego.

Obecność tej gałęzi *RC* stwarza istotne problemy pomiarowe, gdyż wtedy rezystancje R_i ,(t), $R_o(t)$ i $R_d(t)$ imitatora zmieniają swą wartość według zależności wykładniczej w funkcji czasu t aż do osiągnięcia wartości ustalonych R_i ,($t \rightarrow + \infty$), $R_o(t \rightarrow + \infty)$ i $R_d(t \rightarrow + \infty)$, co utrudnia proces wzorcowania mierników za pomocą imitatorów.

3.METODA NR I REALIZACJI IMITACJI DUŻYCH REZYSTANCJI $R_{SO} \neq f(t)$

W dalszym ciągu przyjęto metodę nr I realizacji imitowanej rezystancji $R_{SO}(t)$ niezależnej od czasu t za pomocą odpowiedniego doboru parametrów { R_d , $R_{ad}C_{ad}$ } rezystora R_d .

Można wykazać, że [5]:

$$\frac{R_{d}}{R_{ad}} = \frac{R_{\Sigma}}{R_{a\Sigma}}$$

$$R_{ad}C_{ad} = R_{a\Sigma}C_{a\Sigma}$$
(7a)

gdzie:

$$\frac{R_{\Sigma}}{R_{a\Sigma}} = \frac{R_i}{R_{ai}} + \frac{R_o}{R_{ao}} + \frac{R_i}{R_{ai}} \frac{R_o}{R_{ao}}
R_{a\Sigma}C_{a\Sigma} = R_{ai}C_{ai} + 0.5R_{ao}C_{ao}$$
(7b)

uzyskuje się $R_{SO} \neq f(t)$. Kryteria (7b) mogą być przydatne w przypadku zastosowania do budowy imitatora rezystorów wysokoomowych R_i , R_o o zbliżonych wartościach $R_i = R_o = R$, $R_d = R / k$, $R_{ai}C_{ai} = R_{ao}C_{ao} = R_aC_a$. (rys.2) gdyż

wtedy:

$$R_i(t) = R \frac{1}{1 + \frac{R}{R_a} e^{-\frac{t}{R_a C_a}}}$$
(8a)

2)

a ponadto

$$\frac{R_d}{R_{ad}} = \frac{R}{kR_{ad}} = 2\frac{R}{R_a} + \left(\frac{R}{R_a}\right)^2$$

$$R_{ad}C_{ad} = 1,5R_aC_a$$
(8b)

Niemniej jednak spełnienie relacji (8b) wymaga z kolei odpowiedniego doboru jednocześnie trzech parametrów rezystora wysokoomowego R_d co może być utrudnione i pracochłonne.

4. METODA NR II REALIZACJI IMITACJI DUŻYCH REZYSTANCJI $R_{so} \neq f(t)$

Na podstawie dotychczasowych rozważań przyjęto metodę nr II realizacji imitowanej rezystancji $R_{SO}(t)$ niezależnej od czasu t. Polega ona na modyfikacji struktury imitatora z wykorzystaniem co najwyżej jednego rezystora wysokomowego i elementów RC o niewygórowanych parametrach rysunek 3a,b.

Rys.3. Imitator dużych rezystancji w dwóch przypadkach (a), (b) umiejscowienia rezystorów wysokoomowych (objaśnienia w tekście)

Relacja (6b) przyjmie teraz postać:

$$\frac{Z_{so}(s)}{\frac{R_{i}R_{0}}{R_{d}}} = \begin{cases} \frac{1+sR_{ai}C_{ai}}{1+s(R_{i}+R_{ai})C_{ai}} \frac{1+sR_{d}C_{d}}{1+sR_{o}C_{o}} & dla \quad rys.3a \end{cases}$$
(9)
$$\frac{1+sR_{ao}C_{ao}}{1+s(R_{o}+R_{ao})C_{ao}} \frac{1+sR_{d}C_{d}}{1+sR_{i}C_{i}} & dla \quad rys.3b \end{cases}$$

Kryteria doboru stałych czasowych są zatem następujące. a) imitator dużych rezystancji wg rysunku.3a:

$$R_{d}C_{d} = (R_{i} + R_{ai})C_{ai}$$

$$R_{o}C_{o} = R_{ai}C_{ai}$$
(10)

b) imitator dużych rezystancji wg rysunku 3b:

$$R_{d}C_{d} = (R_{o} + R_{ao})C_{ao}$$

$$R_{i}C_{i} = R_{ao}C_{ao}$$
(11)

5. BŁĘDY REALIZACJI METOD IMITACJI DUŻYCH REZYSTANCJI $R_{so} \neq f(t)$

W przypadku rzeczywistego układu imitatora zamiast wzorów (6a) i (6b) obowiązują relacje:

$$R_{OS}(t) = \frac{R_i R_o}{R_d} \left(\frac{1 + \alpha}{1 + \beta} \right)$$
(12a)

oraz

$$Z_{OS}(s) = \frac{R_i R_o}{R_d} \left(\frac{1+\alpha}{1+\beta}\right)$$
(12b)

gdzie: α , β są błędami względnymi odtworzenia licznika i mianownika. Stąd w przypadku imitatora dużych rezystancji, zbudowanego wg rysunku 2 oraz wg rysunku 3a,b błędy pomiarowe δ wynoszą:

$$\delta(t) = \frac{\alpha - \beta}{1 + \beta} \cdot 100 \%$$
 (13a)

oraz

$$\delta(s) = \frac{\alpha - \beta}{1 + \beta} \cdot 100 \% \tag{13b}$$

i minimalizują się w przypadku relacji: $\alpha = \beta$ rysunek 4.

Rys.4. Charakterystyka błędu $\delta = f(\alpha, \beta)$ realizacji metod (I) i (II) imitacji dużych rezystancji

6. WNIOSKI KOŃCOWE

W pracy przedstawiono zasadę działania imitatora dużych rezystancji w układ typu T, bazującego na przekształceniu "gwiazda-trójkąt" oraz zamieszczono przykład komercyjnej konstrukcji firmy Guildline Instruments.

Wykazano (por. wzory (2) - (3)), że na drodze obliczeniowej usunąć błąd systematyczny δ_{SO} wykorzystujące uproszczenie: $R_{SO} \approx R_i R_o/R_d$.

W szczególności podano zależności pozwalające na opis i korektę dynamiki czasowych zmian rezystancji takiego imitatora dla dwóch przypadków:

I) zastosowania do budowy imitatora dwóch rezystorów wysokoomowych R_i , R_o o zbliżonych wartościach $R_i = R_o$ = R, $R_d = R / k$, $R_{ai}C_{ab} = R_{ao}C_{ao} = R_aC_a$. (rys.2 + wzór (8b)),

II) zastosowania do budowy imitatora tylko jednego rezystora wysokoomowego R_i lub R_o (rys. 3a,b + wzory (10) – (11)).

W obydwu przypadkach (I) i (II) oszacowano błąd δ realizacji metod imitacji dużych rezystancji w zależności od błędów α , β licznika i mianownika rezystancji $R_{OS}(t)$ oraz impedancji $Z_{OS}(s)$ (por. wzory (12a) – (12b) i (13a) – (13b)). Błąd ten minimalizuje się do zera w warunkach spełnienia relacji: $\alpha = \beta$ (rys.4). Reasumując, należy rekomendować jako optymalną strukturę imitatora dużych rezystancji wg rysunku 3a z jednym rezystorem wysokoomowym R_{i} , co dodatkowo pozwala na poszerzenie zakresu imitowanych rezystancji poprzez podwyższenie napięcia zasilania wejścia "Source" imitatora.

7. BIBLIOGRAFIA

- 1. Kłos Z.: Pomiary elektrometryczne, Wydawnictwa Komunikacji i Łączności, Warszawa 2008.
- 2. Kłos Z., Madej P.: Imitowany wzorzec wielkich rezystancji typu IZWR-2, Pomiary, Automatyka, Kontrola, nr 9,, vol., 2001, s.15 -17.
- Lisowski M.: Wzorce dużych rezystancji i stratności dielektrycznej materiałów izolacyjnych, Przegląd Elektrotechniczny, R.85, Nr 9, 2009, s.236-240.
- 4. 9337 Series precision high value "air" resistance standards: www.guildline.com
- Pilśniak A., Guzik J.: Zad.4. Nieliniowe elementy elektroniczne w wybranych zastosowaniach metrologicznych, Raport z pracy BK-252/RE-2/2018, Katedra Metrologii, Elektroniki i Automatyki, Politechnika Śląska, Gliwice, 2018 (praca niepublikowana).

DYNAMICS ANALYSIS OF HIGH RESISTANCE SUBSTITUTER IN T CIRCUIT

The paper presents a dynamics analysis of high resistance substituter that works as a dynamic element in T circuit. The high resistance substituter has one input and one output (see Fig. 1b) and it's principle of operation basing on "star-delta" connection. In introductory section 1 it is shown that the systematic error δ_{SO} of simplifying equation: $R_{SO} \approx R_i R_o / R_d$. (see Eqs. (2) - (3)) can be easily minimalized, e.g. $\delta_{SO} \rightarrow 0$.

In the sections 2 - 4 the describing function of the substituter (e.g. resistance R_{SO} (s) or impedance Z_{SO} (s)) has certain properties that can be used in a correction procedure in two cases:

(I) use to imitator's building two high impedance resistors R_i , R_o about approximate values $R_i = R_o = R$, $R_d = R/k$, $R_{ai}C_{ai} = R_{ao}C_{ao} = R_aC_a$ (see Fig.2 + Eq.(8b)),

(II) use to imitator's building only one high impedance resistor R_i or R_o (see Fig. 3a,b + Eqs. (10) – (11)).

It in both these cases (I) and (II) the high resistance substituter's realization errors δ as a function of numerator α and denominator β of resistance $R_{OS}(t)$ / impedance $Z_{OS}(s)$ (see Eqs. (12a) – (12b) and (13a) – (13b), respectively) is presented. This terror minimalize $\delta \rightarrow 0$ at simplifying relation: $\alpha = \beta$ (see Fig.4).

Recapitulating, one optimum high resistance substituter's structure according to Fig. 3a should to recommend. This solution with one high impedance resistor R_i extensions the range of imitated resistances R_{OS} across supply of voltage rise on the imitator's "Source" input.

Keywords: high resistance substituter, two-terminal RC network, high impedance resistor, high impedance resistor time constant.