Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that, under some general assumptions, the one-sided regularizations of the generator of any uniformly bounded set-valued composition operator, acting in the spaces of functions of bounded variation in the sense of Schramm with nonempty bounded closed and convex values is an affine function. As a special case, we obtain an earlier result ([15]).
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Universidad Central de Venezuela Escuela de Matemáticas, Caracas, Venezuela
autor
- Universidad Central de Venezuela Escuela de Matemáticas, Caracas, Venezuela
autor
- Universidad Central de Venezuela Escuela de Matemáticas, Caracas, Venezuela
autor
- Jan Długosz University, Institute of Mathematics and Computer Science, 42-200 Częstochowa, Al. Armii Krajowej 13/15, Poland
Bibliografia
- [1] A. Azócar, J. A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous setvalued composition operators in the Spaces of functions of bounded variation in the sense of Wiener, Opuscula Mathem, Vol. 30, No. 1, (2010), 53-60.
- [2] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Mat., 5, (1989), 311-320.
- [3] G. Zawadzka, On Lipschitzian Operators of Substitution in the Space of Set-Valued Functions of Bounded Variation, Radovi Matematicki, 6, (1990), 279-293.
- [4] H. Rådström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc., 3, (1952), 165-169.
- [5] H. Nakano, Modulared Semi-Ordered Spaces, Tokyo, 1950.
- [6] J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, Topol. Methods. Nonlinear Aval. 38(2)(2011), 395-406.
- [7] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int., 25, (1982), 127-132.
- [8] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlinear Anal., 3, (1997), 719-726.
- [9] J. Matkowski and J. Miś, On a Characterization of Lipschitzian Operators of Substitution in the Space BV ha, bi, Math. Nachr., 117, (1984), 155-159.
- [10] J. Matkowski, M. Wróbel, Uniformly bounded Nemystkij operators generated by setvalued functions between generalized Hölder functions spaces, Discuss. Math. Differ. Incl. Control Optim. 31(2) (2011), 183-198.
- [11] J. Musielak, W. Orlicz, On Generalized Variations (I), Studia Math. XVIII (1959), 11-41.
- [12] L. Maligranda and W. Orlicz, On Some Properties of Functions of Generalized Variation, Mh. Math. 104 (1987), 53-65.
- [13] L. C. Young, Sur une généralisation de la notion de variation de puissance p-iéme bornée au sens de N. Wiener, et sur la convergence des séries de Fourier, C.R. Acad. Sci. 204, No 7, (1937), 470-472. [14] M. Schramm, Funtions of φ-Bounded Variation and Riemann-Stieltjes integration, Transaction Amer. Math. Soc. 267 (1985), 49 - 63.
- [15] T. Ereú, J. L. Sánchez, N. Merentes, M. Wróbel, Uniformly continuous set-valued composition Operators in the spaces of functions of bounded variation in the sense of Schramm, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XVI, Częstochowa (2011), 23-32.
- [16] V. V. Chistyakov, Generalized variation of mappings with applications to composition operators and multifunctions, Positivity, Vol. 5, 4, (2001), 323-358.
- [17] V. V. Chistyakov, Modular metric spaces, I: Basic concept, Nonlinear Anal. 72, (2010), 1-14.
- [18] V. V.Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal. 72, (2010), 15-30.
- [19] W. A. Luxemburg, Banach Function Spaces, Ph. D. Thesis, Technische Hogeschool te Delft, Netherlands, 1955.
- [20] W. Orlicz, A note on modular spaces. I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1961), 157-162.
- [21] W. W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Mathematica 32(1999), 363-376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d7097d0-7c18-4fad-9ad0-dc3da5353df1