PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diversified gradient boosting ensembles for prediction of the cost of forwarding contracts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A common business practice for transportation forwarders is to bid for shipping contracts at the transport or freight exchanges. Based on the detailed contract requirements they try to estimate the total expected cost of its execution and accordingly bid with the fixed price in advance for delivering such shipping service at the prescribed specification and schedule. The capability to accurately predict the cost of contract execution is the critical factor deciding about the profitability of offered shipping services as well as the amount of business drawn from freight exchanges. However, given highly volatile nature of the transport services ecosystem, it is difficult to simultaneously account for countless dynamically changing factors like fuel prices, currency exchange rates, temporal and spatial multitude of routing and implied traffic risks, the properties of cargo and shipping vehicles etc., which leads to big cost under- or over-estimation resulting with loss-making contracts or equally painful missed revenue opportunities. In the context of FedCSIS 2022 data mining competition we propose an accurate and robust predictor of the cost of forwarding contracts built upon the detailed contract data using the ensemble of the state-of-the-art gradient boosting-based regression models. Our established feature engineering framework combined with deep parametric optimization of the individual models and multi-faceted diversification techniques guiding hybrid final model ensembles were instrumental to outperform all the competitive predictors and win the FedCSIS 2022 contest.
Słowa kluczowe
Rocznik
Tom
Strony
431--436
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d70025e-36e2-4dfe-9d1a-b8f7b0969db3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.