PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Heating Surface Geometry on the Droplets Evaporation under Leidenfrost Conditions

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Physical and geometric factors are generally regarded as the main cause of evaporation characteristics of the Leidenfrost droplets levitating above the hot surface. It is well-known and generally accepted that similar research is conducted under different conditions and on individual measurement set-ups. This is one of the potential reasons for the differences in the results of thermal fluxes and computational models in scientific papers. This paper discusses the influence of the heating surface geometry on the heat transfer coefficient h during water drops evaporation under film boiling regime. The variable geometry parameters are the curvature radius of the heating bowl of R = 64 and 254 mm. Individually compiled test stands made it possible to measure the instantaneous drop mass for each R radius and to determine the coefficient h. The methodology was validated by calculating the relative error. It changes with the curvature radius and the droplet size, and for droplet mass from about 2 g to 0.3 g does not exceed ±10%. The heat transfer coefficient h is about 15% higher for a drop located on a surface with a larger radius of curvature. Moreover, the method that was devised allows us to estimate the h value for asymmetric droplet shapes. The advantage of the adopted method of measuring the drop mass over time is the possibility of analyzing heat transfer processes in any drop shape range, even in the case of asymmetric ones. Previous research methods were mainly based on determining the mass of the drop by calculating its volume
Rocznik
Tom
Strony
115--127
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Poland
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Poland
Bibliografia
  • Agrawal, P., Wells, G.G., Ledesma-Aguilar, R., McHale, G., Buchoux, A., Stokes, A., Sefiane, K.A. (2019). Leidenfrost heat engine: sustained rotation of levitating rotors on turbine-inspired substrates. Appl. Energy, 240, 399-408. https://doi.org/10.1016/j.apenergy.2019.02.034
  • Baumeister, K.J., Humill, T. (1965). Creeping flow solution of the Leidenfrost phenomen. NASA TN D-3133.
  • Baumeister, K.J., Hendricks, R.C., Hamill, T.D. (1966). Metastable Leidenfrost states. NASA TN D-3226.
  • Baumeister, K.J., Hendricks, R.C., Schoessow, G.J. (1977). Thermally driven oscillations and wave motion of a liquid drop. National Heat Transfer Conference, Salt Lake City, Utah, August 14-17. NASA TM X-73625.
  • Bernardin, J.D. Mudawar, L. (1999). The Leidenfrost point: experimental study and assessment of existing models. ASME J Heat Transf., 121, 884-903. https://doi.org/10.1115/1.2826080
  • Breitenbach, J., Roisman, I.V., Tropea, C. (2018). From drop impact physics to spray cooling models: a critical review. Exp Fluids, 59(55). https://doi.org/10.1007/s00348-018-2514-3
  • Burton, J.C., Sharpe, A.L., van der Veen, R.C.A., Franco, A., Nagel, S. R. (2012). Geometry of the Vapor Layer Under a Leidenfrost Drop. Phys. Rev. Lett., 109, 074301. https://doi.org/10.1103/PhysRevLett.109.074301
  • Cai, Ch., Mudawar, I., Liu, H., Si, Ch. (2020). Theoretical Leidenfrost point (LFP) model for sessile droplet. International Journal of Heat and Mass Transfer, 146, 118802, ISSN 0017-9310. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118802
  • Chen, S.M., Bertola, V. (2016). Jumps, somersaults, and symmetry breaking in Leidenfrost drops. Phys. Rev. E, 94, 021102. https://doi.org/10.1103/PhysRevE.94.021102
  • Chen, RH., Huang, YL. (2009). Collision of a liquid drop on the edge region of a plate heated above the Leidenfrost temperature. Exp Fluids, 47, 223-237. https://doi.org/10.1007/s00348-009-0652-3
  • Dupeux, G., Baier, T., Bacot, V., Hardt, S., Clanet, C., Quéré, D. (2013). Self-propelling uneven Leidenfrost solids. Phys. Fluids, 25, 1-7. https://doi.org/10.1063/1.4807007
  • Drachal, A., Poniewski, M. (1981). Przepływ pary i ciepła w poduszce parowej pod kroplą cieczy we wrzeniu błonowym. Materiały XI Zjazdu Termodynamików, Szczecin-Świnoujście, cz. 1, 84-81. (in Polish)
  • Erkan, N. (2019). Full-field spreading velocity measurement inside droplets impinging on a dry solid-heated surface. Exp Fluids, 60, 88. https://doi.org/10.1007/s00348-019-2735-0
  • Kaniowski, R. (2023). Pool Boiling of Novec-649 on Inclined Microchannel. Energies, 16(5), 2476. https://doi.org/10.3390/en16052476
  • Kossakowski, P. G., Wciślik, W., Bakalarz, M. (2019). Effect of selected friction stir welding parameters on mechanical properties of joints. Archives of Civil Engineering, 65(4), 51-62. https://doi.org/10.2478/ace-2019-0046
  • Leidenfrost, J.G. (1966). On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 9(11), 1153-1166.
  • Li, A., Li, H., Lyu, S. et al. (2023). Tailoring vapor film beneath a Leidenfrost drop. Nat Commun, 14, 2646. https://doi.org/10.1038/s41467-023-38366-z
  • Ma, X., Liétor-Santos, J.J., Burton, J.C. (2017). Star-shaped oscillations of Leidenfrost drops. Physical Review Fluids, 2, 031602, 1-8. https://doi.org/10.1103/PhysRevFluids.2.031602
  • Orman, Ł.J., Chatys, R. (2011). Heat transfer augmentation possibility for vehicle heat exchangers. Proc. of 15th Int. Conf. "TRANSPORT MEANS" (Kaunas, Lithuania), 9-12.
  • Carsky, M., Solcova, O., Soukup, K., Kralik, T., Vavrova, K., Janota, L., Vitek, M., Honus, S., Jadlovec, M., Wimmerova, L. (2022). Techno-Economic Analysis of Fluidized Bed Combustion of a Mixed Fuel from Sewage and Paper Mill Sludge. Energies, 15(23), 8964. https://doi.org/10.3390/en15238964
  • Orzechowski, T., Poniewski, M. (1996). Natural Convection inside the Evaporating Droplet – Preliminary Experimental Investigation. Int. Conf. on Heat Transfer with Change of Phase, Kielce, Vol. II, 125-137, PL ISSN 0239-4979.
  • Orzechowski, T., Wciślik, S. (2012). Analysis of the droplet film boiling heat transfer under ambient pressure. Proceedings of 3rd Int. Conf. on Contemporary Problems of Thermal Engineering, CPOTE 2012, 18-20. ISBN 978-83-61506-13-3.
  • Orzechowski, T. (2021). Peculiarities in Leidenfrost water droplet evaporation. Heat and Mass Transfer, 57, 2021, 529-541. https://doi.org/10.1007/s00231-020-02967-x
  • Orzechowski, T., Wciślik, S. (2014). Instantaneous heat transfer for large droplets levitating over a hot surface. Int. J. Heat and Mass Transfer, 73, 110-117. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.008
  • Pastuszko, R., Kaniowski, R., Dadas, N., Bedla-Pawlusek, M. (2021). Pool boiling enhancement and a method of bubble diameter determination on surfaces with deep minichannels. International Journal of Heat and Mass Transfer, 179, 121713, ISSN 0017-9310. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121713
  • Paul, G, Das, P.K, Manna, I. (2015). Droplet oscillation and pattern formation during Leidenfrost phenomenon. Exp. Thermal Fluid Sci., 60, 346-353.
  • Poniewski, M., Staniszewski, B. (1981). O kryzysie wrzenia błonowego – stan wiedzy. Biuletyn Informacyjny Instytutu Techniki Cieplnej Politechniki Warszawskiej Nr 59, 1-71. (in Polish)
  • Poniewski, M., Staniszewski, B. (1986). Experimental and Theoretical Evidences for Dissipative Model of Film Boiling Crisis. Proc. VIII Int. Heat Transfer Conf., San Francisco, Vol. 4, 2025-2029.
  • Pavlenko, A.M., Basok, B.I., Avramenko, A.A. (2005). Heat conduction of a multi-layer disperse particle of emulsion. Heat Transfer Research, 36(1-2), 55-61.
  • Roques-Carmes, T., Domps, A., Marchal, P. et al. (2018). Equivalent capacitive thickness of the vapor layer below Leidenfrost drops. Exp Fluids, 59, 115. https://doi.org/10.1007/s00348-018-2567-3
  • Snoeijer, J.H., Brunet, P., Eggers, J. (2009). Maximum size of drops levitated by an air cushion. Phys. Rev. E, 79, 036307. https://doi.org/10.1103/PhysRevE.79.036307
  • Sodtke, C., Ajaev, V.S., Stephan, P. (2007). Evaporation of thin liquid droplets on heated surfaces. Heat Mass Transfer, 43, 649-657. https://doi.org/10.1007/s00231-006-0126-6
  • Wciślik, S., Mukherjee, S. (2022). Evaluation of three methods of static contact angle measurements for TiO2 nanofluid droplets during evaporation. Phys. Fluids, 34, 062006. https://doi.org/10.1063/5.0096644
Identyfikator YADDA
bwmeta1.element.baztech-3d6d8f95-b368-4ab9-aa18-2f8e1b3850ee