PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atroposelektywna synteza naturalnych chiralnych osiowo związków biarylowych. Część 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Atroposelective synthesis of natural axially chiral biaryl compounds. Part 1
Języki publikacji
PL
Abstrakty
EN
In early twentieth century, it was already known that chemical compounds might be chiral without containing the chiral atoms. The presence of the stereogenic center is a sufficient but not necessary condition that the molecule appears in two forms which are mirror images. In certain cases, the limit of free rotation in the molecule may result in asymmetry, e.g. inhibition of rotation around single bond leads to axial isomers. This is the kind of conformational isomerism, which according to the nomenclature is called atropisomerism [1, 2]. The most often optically active molecules without stereogenic atoms, possessing an axial chirality are biaryls, which are commonly found in nature. In most cases, pharmacological activity of biaryls is associated with the presence of axial chirality (Figs 1, 2; Scheme 1) [1–14]. Generally chiral biaryls are divided into bridged biaryls (Scheme 4–6) [15–24], and biaryls, which do not contain the additional ring (Scheme 2, 3) [25–33]. The thermal stability of both enantiomeric/diastereomeric forms is an essential precondition for atropisomerism. For a given temperature, conformationally stable isomers may coexist when their a half-life is at least 1000 s, which gives the minimum energy barrier of 93 kJ mol–1 at 300 K. Chiral biaryls can be achieved by either desymmetrization of stable but achiral biaryls by modifying one of the groups on the aromatic moiety (Scheme 7–9) [1, 34, 35], or by dynamic kinetic resolution of racemic mixtures of the conformationally unstable chiral substrates. The synthesis of the chirally stable biaryls from the chiral labile substrates is most frequently the result of the extra substituent addition (Scheme 10) [36], and formation or cleavage of a bridge (Scheme 11–16) [37–54]. The axially chiral biaryls can also be obtained in the atroposelective transformation of the alkyl substituent of the arene ring into a second aromatic ring in the presence of an organometallic catalyst (Scheme 17, 18) [55, 56].
Rocznik
Strony
177--197
Opis fizyczny
Bibliogr. 56 poz., schem.
Twórcy
  • Katedra i Zakład Biochemii, Collegium Medicum w Bydgoszczy, UMK Toruń ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra Chemii Organicznej, Wydział Chemii, UMK Toruń ul. Gagarina 7, 87-100 Toruń
  • Katedra i Zakład Chemii Organicznej, Collegium Medicum w Bydgoszczy, UMK Toruń, ul. A. Jurasza 2, 85-089 Bydgoszcz
Bibliografia
  • [1] G. Bringmann, A.J.P. Mortimer, P.A. Keller, M.J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed., 2005, 44, 5384.
  • [2] M.C. Kozlowski, B.J. Morgan, E.C. Linton, Chem Soc Rev., 2009, 38, 3193.
  • [3] C.H. Christie, J. Kenner, J. Chem. Soc., 1922, 121, 614.
  • [4] R. Kuhn, „Molekulare Asymmetrie” in Stereochemie, Franz-Deutike (Red.), Leipzig-Wien 1933.
  • [5] G. Bringmann, T. Gulder, T.A.M. Gulder, M. Breuning, Chem. Rev., 2011, 111, 563.
  • [6] G. Bringmann, R. Seupel, D. Feineis, G. Zhang, M. Xua, J. Wuc, M. Kaiser, R. Brun, E.-J. Seo, T. Efferthf, Fitoterapia, 2016, 115, 1.
  • [7] G Bringmann, A. Irmer, T. Büttner, A. Schaumlöffel, G. Zhang, R. Seupel, D. Feineis, K. Fester, J. Nat. Prod., 2016, 79, 2094.
  • [8] G. Bringmann, G. Zhanga, A. Hagera, M. Moosa, A. Irmera, R. Bargoub, M. Chatterjeeb, Eur. J. Med. Chem., 2011, 46, 5778.
  • [9] G. Bringmann, B. Hertlein-Amslinger, I. Kajahn, M. Dreyer, R. Brun, H. Moll, A. Stich, K.N. Ioset, W. Schmitz, L.H. Ngoc, Phytochemistry, 2011, 72, 89.
  • [10] G. Bringmann, B.K. Lombe, C. Steinert, K.N. Ioset, R. Brun, F. Turini, G. Heubl, V. Mudogo, Org. Lett., 2013, 15, 11.
  • [11] G. Bringmann, A. Irmer, S. Rüdenauer, J Mutanyatta-Comar, R. Seupel, D. Feineis, Tetrahedron, 2016, 72, 2906.
  • [12] G. Bringmann, N. Manchala, T. Büttner, B. Hertlein-Amslinger, R. Seupel, Chem. Eur. J., 2016, 22, 1.
  • [13] R. Seupel, B. Hertlein-Amslinger, T. Gulder, P. Stawski, M. Kaiser, R. Brun, G. Bringmann, Org. Lett., 2016, 18, 6508.
  • [14] G. Bringmann, C. Günther, M. Ochse, O. Schupp, S. Tasler, Progress in the Chemistry of Organic Natural Products, Springer-Verlag, Wien, New York 2001.
  • [15] A.K. Coulter, L.M. Clemens, J. Phys. Chem., 1964, 68, 651.
  • [16] A.S. Cooke, M.M. Harris, J. Chem. Soc., 1963, 2365.
  • [17] C. Wolf, W.A. König, C. Roussel, Liebigs Ann., 1995, 781.
  • [18] A.I. Meyers, R. J. Himmelsbach, J. Am. Chem. Soc., 1985, 107, 682.
  • [19] R.W. Baker, Z. Brkic, M.V. Sargent, B.W. Skelton, A.H. White, Aust. J. Chem., 2000, 53, 925.
  • [20] G. Bringmann, K. Messer, K. Wolf, J. Mühlbacher, M. Grüne, R. Brun, A.M. Louis, Phytochemistry, 2002, 60, 389.
  • [21] N. Hasaka, M. Okigawa, I. Kouno, N. Kawano, Bull. Chem. Soc., Jpn. 1982, 55, 3828.
  • [22] L. Meca, D. Řeha, Z. Havlas, J. Org. Chem., 2003, 68, 5677.
  • [23] K. Mislow, M.A.W. Glass, H.B. Hopps, E. Simon, G.H.Jr. Wahl, J. Am. Chem. Soc., 1964, 86, 1710.
  • [24] G. Bott, L.D. Field, S. Sternhell, J. Am. Chem. Soc., 1980, 102, 5618.
  • [25] K. Peters, E.-M. Peters, H.G. von Schnering, G. Bringmann, T. Hartung, O. Schupp, Z. Kristallogr., 1992, 202, 271.
  • [26] G. Bringmann, T. Hartung, L. Göbel, O. Schupp, C.L.J. Ewers, B. Schöner, R. Zagst, K. Peters, H.G. von Schnering, C. Burschka, Liebigs Ann. Chem., 1992, 225.
  • [27] G. Bringmann, M. Heubes, M. Breuning, L. Göbel, M. Ochse, B. Schöner, O. Schupp, J. Org. Chem. 2000, 65, 722.
  • [28] G. Bringmann, M. Breuning, H. Endress, D. Vitt, K. Peters, E.- M. Peters, Tetrahedron, 1998, 54, 10677.
  • [29] G. Bringmann, P. A. Keller, K. Rölfing, Synlett, 1994, 423.
  • [30] M. Hatsuda, H. Hiramatsu, S. Yamada, T. Shimizu, M. Seki, J. Org. Chem., 2001, 66, 4437.
  • [31] S. Superchi, D. Casarini, A. Laurita, A. Bavoso, C. Rosini, Angew. Chem. Int. Ed., 2001, 40, 451.
  • [32] R. Adams, N. Kornblum, J. Am. Chem. Soc., 1941, 63, 188.
  • [33] K. Mislow, S. Hyden, H. Schaefer, J. Am. Chem. Soc., 1962, 84, 1449.
  • [34] T. Harada, S. Ueda, T. Yoshida, A. Inoue, M. Takeuchi, N. Ogawa, A. Oku, M. Shiro, J. Org. Chem., 1994, 59, 7575.
  • [35] T. Matsumoto, T. Konegawa, T. Nakamura, K. Suzuki, Synlett, 122, 2002.
  • [36] F. Kakiuchi, P. Le Gendre, A. Yamada, H. Ohtaki, S. Murai, Tetrahedron: Asymmetry, 2000, 11, 2647.
  • [37] G. Capozzi, C. Ciampi, G. Delogu, S. Menichetti, C. Nativi, J. Org. Chem., 2001, 66, 8787.
  • [38] K.S. Feldman, K.J. Eastman, G. Lessene, Org. Lett., 2002, 4, 3525.
  • [39] Y. Imai, W. Zhang, T. Kida, Y. Nakatsuji, I. Ikeda, Tetrahedron Lett., 1997, 38, 2681.
  • [40] Y. Imai, W. Zhang, T. Kida, Y. Nakatsuji, I. Ikeda, J. Org. Chem., 2000, 65, 3326.
  • [41] G. Bringmann, T. Hartung, L. Göbel, O. Schupp, C.L.J. Ewers, B. Schöner, R. Zagst, K. Peters, H.G. Von Schnering, C. Burschka, Liebigs Ann. Chem., 1992, 225.
  • [42] K. Kamikawa, K. Norimura, M. Furusyo, T. Uno, Y. Sato, A. Konoo, G. Bringmann, M. Uemura, Organometallics, 2003, 22, 1038.
  • [43] K. Kamikawa, M. Furusyo, T. Uno, Y. Sato, A. Konoo, G. Bringmann, M. Uemura, Org. Lett., 2001, 3, 3667.
  • [44] G. Bringmann, J. Hinrichs, P. Henschel, J. Kraus, K. Peters, E.-M. Peters, Eur. J. Org. Chem., 2002, 1096.
  • [45] H. Abe, S. Takeda, T. Fujita, K. Nishioka, Y. Takeuchi, T. Harayama, Tetrahedron Lett., 2004, 45, 2327.
  • [46] G.A. Molander, K.M. George, L.G. Monovich, J. Org. Chem., 2003, 68, 9533.
  • [47] G. Bringmann, M. Ochse, Synlett, 1998, 1294.
  • [48] G. Bringmann, M. Ochse, R. Götz, J. Org. Chem., 2000, 65, 2069.
  • [49] G. Bringmann, J. Hinrichs, T. Pabst, P. Henschel, K .Peters, E.-M. Peters, Synthesis, 2001, 155.
  • [50] Bringmann G., Pabst T., Henschel P., Kraus J., Peters K., Peters E.-M., D. S. Rycroft, J. Connolly, J. Am. Chem. Soc., 122, 9127, 2000.
  • [51] G. Bringmann, D. Menche, Angew. Chem. Int. Ed., 2001, 40, 1687.
  • [52] G. Bringmann, D. Menche, J. Kraus, J. Mühlbacher, K. Peters, E.-M. Peters, R. Brun, M. Bezabih, B.M. Abegaz, J. Org. Chem., 2002, 67, 5595.
  • [53] G. Bringmann, J. Holenz, R. Weirich, M. Rübenacker, C. Funke, M.R. Boyd, R.J. Gulakowski, G. François, Tetrahedron, 1998, 54, 497.
  • [54] G. Bringmann, D. Menche, J. Mühlbacher, M. Reichert, N. Saito, S.S. Pfeiffer, B.H. Lipshutz, Org. Lett., 2002, 4, 2833.
  • [55] A. Gutnov, B. Heller, C. Fischer, H.-J. Drexler, A. Spannenberg, B. Sundermann, C. Sundermann, Angew. Chem. Int. Ed., 2004, 43, 3795.
  • [56] J. Bao, W.D. Wulff, M.J. Fumo, E.B. Grant, D.P. Heller, M.C. Whitcomb, S.-M. Yeung, J. Am. Chem. Soc., 1996, 118, 2166.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d67b6ec-4a8e-4af9-8668-18587690fdc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.