PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH) of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.
Rocznik
Strony
373--382
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • St. Pigon Krosno State College, Department of Environmental Engineering, Rynek 1, 38-400 Krosno, Poland
autor
  • St. Pigon Krosno State College, Department of Environmental Engineering, Rynek 1, 38-400 Krosno, Poland
Bibliografia
  • 1. Acuna-Askar K., Englande JR A.J., Hu C., Jin G., 2000. Methyl tertiary-butyl ether (MTBE) biodegradation in batch and continous upflow fixed-biofilm reactors. Water Sci. Technol., 42, 153-161. DOI: 10.1080/10934529.2012.667319.
  • 2. Almeida M., Butler D., 2002. In-sewer wastewater characterization and model parameter determination using respirometry. Water Environ. Res., 70, 295-305. DOI: 10.2175/1061430008X370395.
  • 3. Bortone G., Chech J.S., Germirli F., Bianchi R., Tilche A., 1994. Experimental approaches for the characterisation of a nitrification/denitrification process on industrial wastewater. Water Sci. Technol., 29, 129-138. DOI: 10.2166/wst.
  • 4. Dold P.L., Bagg W.K., Marais GvR., 1986. Measurement of readily biodegradable COD fraction in municipal wastewater by ultrafiltration. UCT Rep. No. W57, Dept. Civil Eng., Univ. of Cape Town, Rondebosh 7701, South Africa.
  • 5. Dulekgurgen E., Doğruel S., Karahan Ö., Orhon D., 2006. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res., 40, 273-282. DOI: 10.1016/j.watres.2005.10.032.
  • 6. Ferrai M., Guglielmi G., Andreottola G., 2010. Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment. Environ. Modell. Software, 25, 626-632. DOI: 10.1016/j.envsoft.2009.05.005.
  • 7. García-Mesa J. J., Poyatos J. M., Delgado-Ramos F., Muñio M. M., Osorio F., Hontoria E., 2010. Water quality characterization in real biofilm wastewater treatment systems by particle size distribution. Bioresour. Technol., 101, 8038-8045. DOI: 10.1016/j.biortech.2010.05.071.
  • 8. Henze M., 1992. Characterisation of wastewater for modelling of activated sludge process. Water Sci. Technol., 25, 1-15. DOI: 10.2166/wst.
  • 9. Hu Z., Chandran K., Smets B. F., Grasso D., 2002. Evaluation of a rapid physical–chemical method for the determination of extant soluble COD. Water Res., 36, 617-624. DOI: 10.1016/S0043-1354(01)00273-1.
  • 10. Johnson C.H., Page M.W., Blaha L., 2000. Full scale moving bed biofilm reactor results from refinery and slaughter house treatment facilities. Water Sci. Technol., 41, 401-407. DOI: 10.2166/wst.8406282.
  • 11. Karahan Ö., Dogruel S., Dulekgurgen E., Orhon D., 2008. COD fractionation of tannery wastewaters - Particle size distribution, biodegradability and modeling. Water Res., 42, 1083-1092. DOI: 10.1016/j.watres.2007.10.001.
  • 12. Kumaran P., Paruchuri Y.L., 1997. Kinetic of phenol biotransformation. Water Res., 31, 11-22. DOI: 10.1016/S0043-1354(99)80001-3.
  • 13. Lagarde F., Tusseau-Vuillemin M. H., Lessard P., Héduit A., Dutrop F., Mouchel J. M., 2005. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res., 39, 4768-4778. DOI: 10.1016/j.watres.2005.08.026.
  • 14. Lazarova V., Perera J., Bowen M., Sheilds P., 2000. Application of aerated biofilters for production of high quality water for industrial reuse in West Basin. Water Sci. Technol., 41, 417-424. DOI: 10.2166/wst.
  • 15. Mamais D., Jenkins D., Pitt P., 1993. A rapid physical-chemical method for the determination for readily biodegradable soluble COD in municipal wastewater. Water Res., 27, 195-197. DOI: 10.1016/0043-1354(93)90211-Y.
  • 16. Mbewe A., Wentzel M.C., Ekama G.A., 1995. Characterisation of municipal wastewaters. UCT, Rep. No. W 84, Dept. Civil Eng., Univ. of Cape Town, Rondebosh 7701, South Africa.
  • 17. Park J.K., Wang J., Novotny G., 1997. Wastewater characterisation for evaluation of biological phosphorus removal. Wisconsin Department of Natural Resources. Research Rep. 174.
  • 18. Park T.J., Lee K.H., Kim D.S., Kim C.W., 1996. Petrochemical wastewater treatment with aerated submerged fixed-film reactor (ASFFR) under high organic loading rate. Water Sci. Technol., 34, 9-16. DOI: 10.2166/wst.009708414.
  • 19. Schlegel S., Teichgraber B., 2000. Operational results and experience with submerged fixed-film reactors in the pretreatment of industrial effluents. Water Sci. Technol. 41, 453-459. DOI: 10.2166/wst.8406301.
  • 20. Shulan X., Hultman B., 1996. Experiences in wastewater characterization and model calibration for the activated sludge process. Water Sci. Technol., 33, 89–98. DOI: 10.1016/0273-1223(96)00462-3.
  • 21. Trela J., 2000. Intensyfikacja biologicznego usuwania azotu w dwufazowym procesie osadu czynnego ze wstępną denitryfikacją. PhD Dissertation, Krakow University of Technology, Faculty of Environmental Engineering, Kraków.
  • 22. Trojanowicz K., Dusza P., 2001. Pomiary respiracji osadu czynnego w kontroli biologicznego oczyszczania ścieków Rafinerii Nafty „Glimar” S.A., Inżynieria Ekologiczna, 4, 39–51.
  • 23. Trojanowicz K., Dusza P., 2003. Oczyszczanie ścieków w Rafinerii Nafty „Glimar” S.A. Inżynieria Ekologiczna, 16, 143-151.
  • 24. Trojanowicz K., Styka W., Baczynski T., 2009. Experimental determination of kinetic parameters for heterotrophic microorganisms in biofilm under petrochemical wastewater conditions. Polish J. Environ. Stud., 2, 913-921.
  • 25. Trojanowicz K., Wojcik W., 2011. Calibration and verification of models of organic carbon removal kinetics in Aerated Submerged Fixed-Bed Biofilm Reactors (ASFBBR): A case study of wastewater from an oil-refinery. Water Sci. Technol., 63, 2446-2456. DOI: 10.2166/wst.2011.216.
  • 26. Vanhooren H., 2002. Modelling for optimisation of biofilm wastewater treatment processes: A complexity compromise. PhD Dissertation. Univeristeit Gent.
  • 27. Wentzel M.C., Mbewe A., Lakay M.T., Ekama G.A., 1999. Batch test for characterization of the carbonaceous materials in municipal wastewaters. Water SA, 25 (3), 327-336.
  • 28. Yang L., Ching-Ting L., Shieh W.K., 2000. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res., 34, 3300-3314. DOI: 10.1016/S0043-1354(00)00072-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d66320c-8758-4dc9-b656-93d446c16a08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.