PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solar power and multi-battery for new configuration DC microgrid using centralized control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The abundant use of solar energy in Indonesia has the potential to become electrical energy in a microgrid system. Currently the use of renewable energy sources (RESs) in Indonesia is increasing in line with the reduction of fossil fuels. This paper proposes a new microgrid DC configuration and designs a centralized control strategy to manage the power flow from renewable energy sources and the load side. The proposed design uses three PV arrays (300 Wp PV module) with a multi-battery storage system (MBSS), storage (200 Ah battery). Centralized control in the study used an outseal programmable logic controller (PLC). In this study, the load on the microgrid is twenty housing, so that the use of electrical energy for one day is 146.360 Wh. It is estimated that in one month it takes 4.390.800 Wh of electrical energy. The new DC microgrid configuration uses a hybrid configuration, namely the DC coupling and AC coupling configurations.The results of the study show that the DC microgrid hybrid configuration with centralized control is able to alternately regulate the energy flow from the PV array and MBSS. The proposed system has an efficiency of 98% higher than the previous DC microgrid control strategy and configuration models.
Słowa kluczowe
Rocznik
Strony
931--950
Opis fizyczny
Bibliogr. 46 poz., fig., tab.
Twórcy
  • Department of Electrical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
  • Department of Mechanical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
Bibliografia
  • [1] Fahad S.A.-I., DC Microgrid Planning, Operation, and Control: A Comprehensive Review, IEEE Access, vol. 9, pp. 36154–36172 (2021), DOI: 10.1109/ACCESS.2021.3062840.
  • [2] Xiaoqing L., Xinghuo Y., Jingang L., Josep M.G., Hong Z., Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication link, IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 448–460 (2017), DOI: 10.1109/TII.2016.2603844.
  • [3] Mahdieh N., Roya A., Oleksandr H., Indrek R., Tanel J., Andrei B., Recent Contributions, Future Prospects and Limitations of Interlinking Converter Control in Hybrid AC/DC Microgrids, IEEE Access, vol. 9, pp. 7960–7984 (2021), DOI: 10.1109/ACCESS.2020.3049023.
  • [4] Lázaro Alvarado-Barrios, Álvaro Rodríguez del Nozal, Juan Boza Valerino, Ignacio García Vera, Jose L. Martínez-Ramos, Stochastic unit commitment in microgrids: Influence of the load forecasting error and the availability of energy storage, Renewable Energy, vol. 146, pp. 2060–2069 (2020), DOI: 10.1016/j.renene.2019.08.032.
  • [5] Wenhua W., Yandong C., An L., Leming Z., Xiaoping Z., Ling Y., Yanting D., Josep M.G., A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines, IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 6005–6016 (2017), DOI: 10.1109/TIE.2016.2645898.
  • [6] Jaynendra K., Aanshul A., Nitin S., Design, operation and control of a vast DC microgrid for integration of renewable energy sources, Renewable Energy Focus, vol. 34, pp. 17–36 (2020), DOI: 10.1016/j.ref.2020.05.001.
  • [7] Parol M., Kapler P., Marzecki J., Parol P., Polecki M., Rokicki L., Effective approach to distributed optimal operation control in rural low voltage microgrids, Archives of Electrical Engineering, vol. 68, no. 4, pp. 661–678 (2020), DOI: 10.24425/bpasts.2020.134178.
  • [8] Md Alamgir H., Hemanshu R.P., Md Jahangir H., Frede B., Evolution of microgrids with converter-interfaced generations: Challenges and opportunities, International Journal of Electrical Power & Energy, vol. 109, pp. 160–186 (2019), DOI: 10.1016/j.ijepes.2019.01.038.
  • [9] Hammad A., Ming Y., Ammar A., Naghmash A., Mengqiu W., Iftikar A., Design of integral terminal sliding mode controller for the hybrid AC/DC microgrids involving renewables and energy storage systems, International Journal of Electrical Power & Energy System, vol. 119, pp. 1–15 (2020), DOI: 10.1016/j.ijepes.2020.105857.
  • [10] Marjan S.-R., Mahdieh S.S., Qobad S., Mohammad R.J.-M., Robust decentralized voltage control for uncertain DC microgrids, International Journal of Electrical Power & Energy System, vol. 125, pp. 1–13 (2021), DOI: 10.1016/j.ijepes.2020.106468.
  • [11] Akhtar H., Van-Hai B., Hak-Man K., Robust optimal operation of AC/DC hybrid microgrids under market price uncertainties, IEEE Access, vol. 6, pp. 2654–2667 (2018), DOI: 10.1109/AC-CESS.2017.2784834.
  • [12] Changjie Y., Hongwei W., Fabrice L., Manuela S., Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor, Energy Conversion Management, vol. 132, pp. 14–27 (2017), DOI: 10.1016/j.enconman.2016.11.018.
  • [13] Qianwen X., Tianyang Z., Yan X., Zhao X., Peng W., Frede B., A distributed and robust energy management system for networked hybrid AC/DC microgrids, IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3496–3508 (2020), DOI: 10.1109/TSG.2019.2961737.
  • [14] Yong Z., Wei W., Decentralized coordination control of PV generators, storage battery hydrogen production unit and fuel cell in islanded DC microgrid, International Journal Hydrogen Energy, vol. 45, no. 15, pp. 8243–8256 (2020), DOI: 10.1016/j.ijhydene.2020.01.058.
  • [15] Chuanlin Z., Xiaoyu W., Pengfeng L., Peter X.L., Yunda Y., Jun Y., Finite-Time Feedforward Decoupling and Precise Decentralized Control for DC Microgrids Towards Large-Signal Stability, IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 391–402 (2020), DOI: 10.1109/TSG.2019.2923536.
  • [16] Fangyuan L., Jiahu Q., Yu K., Closed-loop hierarchical operation for optimal unit commitment and dispatch in microgrids: A hybrid system approach, IEEE Transactions on Power System, vol. 35, no. 1, pp. 516–526 (2020), DOI: 10.1109/TPWRS.2019.2931293.
  • [17] Chen L., Jinbin Z., Shanshan W., Wu L., Keqing Q., Active identification method for line resistance in DC microgrid based on single pulse injection, IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5561–5564 (2018), DOI: 10.1109/TPEL.2017.2784565.
  • [18] Igyso Z., Ionela P., Laurent L., Laurent P., Meshed DC microgrid hierarchical control: A differential flatness approach, Electrical Power System Research, vol. 180, pp. 1–17 (2020), DOI: 10.1016/j.epsr.2019.106133.
  • [19] Md Shafiul A., Mohammad A.Y.A., Fault ride-through capability enhancement of voltage source converter-high voltage direct current systems with bridge type fault current limiters, Energies, vol. 10, no. 11, pp. 1–19 (2017), DOI: 10.3390/en10111898.
  • [20] Minghan Y., Yang F., Yang M., Zhenkun L., Chengshan W., Hierarchical control of DC microgrid with dynamical load power sharing, Applied Energy, vol. 239, pp. 1–11 (2019), DOI: 10.1016/j.apenergy.2019.01.081.
  • [21] Ahmed A.A., Ahmed T.E., Tarek A.Y., Osama A.M., Hierarchical control for DC microgrid clusters with high penetration of distributed energy resources, Electrical Power System Research, vol. 148, pp. 210–219 (2017), DOI: 10.1016/j.epsr.2017.04.003.
  • [22] Amirreza N., Hedayat S., Hasan M., Shahram J., Zulkurnain A.-M., Sustainable and reliable hybrid AC/DC microgrid planning considering technology choice of equipment, Sustainable Energy Grids and Network, vol. 23, pp. 1–14 (2020), DOI: 10.1016/j.segan.2020.100386.
  • [23] Ahmed M.S., Haytham M.A.A., Magdy M.A.S., A planning framework for AC–DC bilayer microgrids, Electric Power System Research, vol. 188, pp. 1–9 (2020), DOI: 10.1016/j.epsr.2020.106524.
  • [24] Hossein L., Amin K., AC versus DC microgrid planning, IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 296–304 (2017), DOI: 10.1109/TSG.2015.2457910.
  • [25] Marjan S.-R., Mahdieh S.S., Qobad S., Mohammad R.J.-M., Robust decentralized voltage control for uncertain DC microgrids, International Journal of Electrical Power & Energy System, vol. 125, pp. 1–13 (2021), DOI: 10.1016/j.ijepes.2020.106468.
  • [26] Yang H., Ke Z., Hong L., Ernane A.A.C., Josep M.G., MAS based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview, IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6488–6508 (2018), DOI: 10.1109/TPEL.2017.2761438.
  • [27] Fei G., Ren K., Jun C., Tao Y., Primary and secondary control in DC microgrids: A review, Journal of Modern Power System and Clean Energy, vol. 7, no. 2, pp. 227–242 (2019), DOI: 10.1007/s40565-018-0466-5.
  • [28] Vijay A.S., Suryanarayana D., Mukul C.C., Unbalance mitigation strategies in microgrids, IET Power Electronics, vol. 13, no. 9, pp. 1687–1710 (2020), DOI: 10.1049/iet-pel.2019.1080.
  • [29] Amel K., Slimane S., Abdellah C., Abdelkader B., Benaissa B., Mohammed G., Energy Management Strategy Based on Marine Predators Algorithm for Grid-Connected Microgrid, International Journal of Renewable Energy Development, vol. 11, no. 3, pp. 751–765 (2022), DOI: 10.14710/ijred.2022.42797.
  • [30] Zahid U., Muhammad B., Operational Planning and Design of Market-Based Virtual Power Plant with High Penetration of Renewable Energy Sources, International Journal of Renewable Energy Development, vol. 11, no. 3, pp. 620–629 (2022), DOI: 10.14710/ijred.2022.44586.
  • [31] Ioan Serban, Sandra Céspedes, Corneliu Marinescu, Cesar A. Azurdia-Meza, Juan S. Gómez, Doris Sáez Hueichapan, Communication requirements in microgrids: A practical survey, IEEE Access, vol. 8, pp. 47694–47712 (2020), DOI: 10.1109/ACCESS.2020.2977928.
  • [32] IEEE, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Standard 1547–2018 (2018), DOI: 10.1109/IEEESTD.2018.8332112.
  • [33] Yi Z., Qiuye S., Jianguo Z., Linjuan L., Panfeng W., Josep M.G., Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement, IEEE Transactions on Energy Conversion, vol. 36, no. 1, pp. 95–110 (2021), DOI: 10.1109/TEC.2020.3011223.
  • [34] Bhaskara R.R., Narsa R.T., Control of a supercapacitor-battery PV based stand-alone DC-microgrid, IEEE Transactions on Energy Conversion, vol. 35, no. 3, pp. 1268–1277 (2020), DOI: 10.1109/TEC.2020.2982425.
  • [35] Alok A., Chandra S.N., Rajesh G., Hybrid DC-AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration, IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9097–9107 (2019), DOI: 10.1109/TIE.2019.2899559.
  • [36] Muhammad M., Chul-Hwan K., Muhammad S., Robust centralized control for DC islanded microgrid considering communication network delay, IEEE Access, vol. 8, pp. 77765–77778 (2020), DOI: 10.1109/ACCESS.2020.2989777.
  • [37] Cook Michael D., Parker Gordon G., Robinett Rush D., Weaver Wayne W., Decentralized modeadaptive guidance and control for DC microgrid, IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 263–271 (2017), DOI: 10.1109/TPWRD.2016.2583384.
  • [38] Hossein L., Amin K., AC versus DC microgrid planning, IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 296–304 (2017), DOI: 10.1109/TSG.2015.2457910.
  • [39] Mashood N., Saqib I., Hassan A.K., Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids, IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2919–2928 (2018), DOI: 10.1109/TPWRS.2017.2757150.
  • [40] Anastasios Oulis Rousis, Ioannis Konstantelos, Goran Strbac, A Planning Model for a Hybrid AC–DC Microgrid Using a Novel GA/AC OPF Algorithm, IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 227–237 (2020), DOI: 10.1109/TPWRS.2019.2924137.
  • [41] Waleed M.H., Mohammed A.A., Luai M.A., Optimum sizing of hybrid PV, wind, battery and diesel system using lightning search algorithm, Arabian Journal Science Engineering, vol. 45, no. 3, pp. 1871–1883 (2020), DOI: 10.1007/s13369-019-04292-w.
  • [42] Sayed M., Mostafa F.S., Muhammad I., Erchin S., Khalid A.Q., An efficient planning algorithm for hybrid remote microgrids, IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 257–267 (2019), DOI: 10.1109/TSTE.2018.2832443.
  • [43] Antonio Veira Pombo, Joao Murta-Pina, Vitor Fernão Pires, Multiobjective formulation of the integration of storage systems within distribution networks for improving reliability, Electrical Power System Research, vol. 148, pp. 87–96 (2017), DOI: 10.1016/j.epsr.2017.03.012.
  • [44] Muhammad Rashad, Muhammad Ashraf, Aamer I.B., Daud M.M., Bilal A.A., Mathematical modeling and stability analysis of DC microgrid using SM hysteresis controller, Electrical Power and Energy Systems, vol. 95, pp. 507–522 (2018), DOI: 10.1016/j.ijepes.2017.09.001.
  • [45] Pedro Bezerra Leite Neto, Osvaldo R. Saavedra, Luiz Antonio de Souza Ribeiro, A Dual Battery Storage Bank Configuration For Isolated Microgrids Based On Renewable Sources, IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1618–1626 (2018), DOI: 10.1109/TSTE.2018.2800689.
  • [46] Arturo Conde, Gustavo Pérez, Guillermo Gutiérrez-Alcaraz, Zbigniew Leonowicz, Frequency Improvement in Microgrids Through Battery Management System Control Supported by a Remedial Action Scheme, IEEE Access, vol. 10, pp. 8081–8091 (2021), DOI: 10.1109/ACCESS.2022.3143034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d64c575-94f5-439f-a9f7-d269c6ebe02d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.