PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Raw data from Ocular Response Analyzer applied for differentiation of normal and glaucoma patients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Presented study describes new parameters calculated from the Ocular Response Analyzer (ORA) raw data. Such an approach can increase the applicability of the ORA in ophthalmic diagnosis. Among many proposed and examined by us parameters from raw data of the air pressure and applanation curves, only a few were chosen and then applied for characterizing a selected group of patients. Methods: The study included healthy subjects in a control group and patients divided into 2 groups: suspect and glaucoma. A series of four ORA measurements were taken from each subject. The raw ORA data were numerically analyzed and new parameters were calculated from the ORA curves for each measurement. Comparative analysis was carried out for the newly proposed parameters (and original parameters from the ORA device). Results: This interesting finding is that the new parameters showed a statistically significant ability to distinguish the glaucoma suspect group from healthy and glaucomatous patients. Moreover comparable or higher repeatability than for IOPg and CH was obtained. Conclusion: Raw data from the ORA enables definition and numerical analysis of new parameters, characterizing every measurement, which can be successfully used for describing an individual eye and differentiating between some specific groups of patients.
Czasopismo
Rocznik
Strony
147--159
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Optics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Optics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Optics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Optics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Ophthalmology, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1, 50-367 Wrocław, Poland
Bibliografia
  • [1] KOPROWSKI R., TIAN L., Quantitative assessment of the impact of blood pulsation on intraocular pressure measurement results in healthy subjects, Journal of Ophthalmology, Vol. 2017, article 9678041,DOI:10.1155/2017/9678041.
  • [2] POURJAVAN S., BOELLE P.Y., DETRY-MOREL M., DE POTTER P., Physiological diurnal variability and characteristics of the ocular pulse amplitude (OPA) with the dynamic contour tonometer (DCT-Pascal®),International Ophthalmology 27(6), 2007, pp. 357–360, DOI:10.1007/s10792-007-9161-7.
  • [3] HOFFMANN E.M., GRUS F.H., PFEIFFER N., Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry, BMC Ophthalmology 4, 2004, article 4, DOI:10.1186/1471-2415-4-4.
  • [4] DOUGHTY M.J., ZAMAN M.L., Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach, Survey of Ophthalmology 44(5), 2000, pp. 367–408, DOI:10.1016/S0039-6257(00)00110-7.
  • [5] PATWARDHAN A.A., KHAN M., MOLLAN S.P., HAIGH P., The importance of central corneal thickness measurements and decision making in general ophthalmology clinics: a masked observational study, BMC Ophthalmology 8, 2008, article 1, DOI:10.1186/1471-2415-8-1.
  • [6] KOTECHA A., ELSHEIKH A., ROBERTS C.R., ZHU H., GARWAY-HEATH D.F., Corneal thickness- and age-related biomechanical properties of the cornea measured with the Ocular Response Analyzer, Investigative Ophthalmology and Visual Science 47(12), 2006, pp. 5337–5347, DOI:10.1167/iovs.06-0557.
  • [7] ASEJCZYK-WIDLICKA M., SRODKA W., PIERSCIONEK B., A comparative analysis of Goldmann tonometry correction, Journal of Glaucoma 26(3), 2017, pp. 233–240, DOI:10.1097/IJG.0000000000000588.
  • [8] HAMILTON K.E., PYE D.C., Young’s modulus in normal corneas and the effect on applanation tonometry, Optometry and Vision Science 85(6), 2008, pp. 445–450, DOI:10.1097/OPX.0b013e3181783a70.
  • [9] LUCE D.A., Determining in vivo biomechanical properties of the cornea with an ocular response analyser, Journal of Cataract and Refractive Surgery 31(1), 2005, pp. 156–162, DOI:10.1016/j.jcrs.2004.10.044.
  • [10] BONATTI J.A., BECHARA S.J., CARRICONDO P.C., KARA-JOSÉ N., Proposal for a new approach to corneal biomechanics: dynamic corneal topography, Arquivos Brasileiros de Oftalmologia 72(2), 2009, pp. 264–267, DOI:10.1590/s0004-27492009000200028.
  • [11] TOUBOUL D., BÉNARD A., MAHMOUD A.M., GALLOIS A., COLIN J., ROBERTS C.J., Early biomechanical keratoconus pattern measured with an ocular response analyzer: curve analysis, Journal of Cataractand Refractive Surgery 37(12), 2011, pp. 2144–2150, DOI:10.1016/j.jcrs.2011.06.029.
  • [12] PEPOSE J.S., FEIGENBAUM S.K., QAZI M.A., SANDERSON J.P., ROBERTS C.J., Changes in corneal bio-mechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry, American Journal of Ophthalmology 143(1), 2007, pp. 39–47, DOI:10.1016/j.ajo.2006.09.036.
  • [13] MURPHY M.L., POKROVSKAYA O., GALLIGAN M., O’BRIEN C., Corneal hysteresis in patients with glaucoma-like optic discs, ocular hypertension and glaucoma, BMC Ophthalmology 17, 2017, article 1, DOI:10.1186/s12886-016-0396-9.
  • [14] CONGDON N.G., BROMAN A.T., BANDEEN-ROCHE K., GROVER D., QUIGLEY H.A., Central corneal thickness and corneal hysteresis associated with glaucoma damage, American Journal of Ophthalmology 141(5), 2006, pp. 868–875, DOI:10.1016/j.ajo.2005.12.007.
  • [15] SULLIVAN-MEE M., BILLINGSLEY S.C., PATEL A.D., HALVERSON K.D., ALLDREDGE B.R., QUALLS C., Ocular response analyzer in subjects with and without glaucoma, Optometry and Vision Science 85(6), 2008, pp. 463–470, DOI:10.1097/OPX.0b013e3181784673.
  • [16] KIDA T., LIU J.H.K., WEINREB R.N., Effect of 24-hour corneal biomechanical changes on intraocular pressure measurement, Investigative Ophthalmology and Visual Science 47(10), 2006, pp. 4422–4426, DOI:10.1167/iovs.06-0507.
  • [17] AVETISOV S.E., NOVIKOV I.A., BUBNOVA I.A., ANTONOV A.A., SIPLIVYI V.I., Determination of corneal elasticity coefficient using the ORA database, Journal of Refractive Surgery 26(7), 2010, pp. 520–524, DOI:10.3928/1081597X-20091030-01.
  • [18] KERAUTRET J., COLIN J., TOUBOUL D., ROBERTS C., Biomechanical characteristics of the ectatic cornea, Journal of Cataract and Refractive Surgery 34(3), 2008, pp. 510–513, DOI:10.1016/j.jcrs.2007.11.018.
  • [19] ZAREI-GHANAVATI S., RAMIREZ-MIRANDA A., YU F., HAMILTON D.R., Corneal deformation signal waveform analysis in keratoconic versus post-femtosecond laser in situ keratomileusis eyes after statistical correction for potentially confounding factors, Journal of Cataract and Refractive Surgery 38(4), 2012, pp. 607–614, DOI:10.1016/j.jcrs.2011.11.033.
  • [20] ELSHEIKH A., JODA A., ABASS A., GARWAY-HEATH D., Assessment of the ocular response analyzer as an instrument for measurement of intraocular pressure and corneal biomechanics, Current Eye Research 40(11), 2015, pp. 1111–1119, DOI:10.3109/02713683.2014.978479.
  • [21] KOTECHA N., WHITE E., SCHLOTTMANN P.G., GARWAY-HEATH D.F., Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers, Ophthalmology 117(4), 2010, pp. 730–737, DOI:10.1016/j.ophtha.2009.09.020.
  • [22] JÓŹWIK A., KASPRZAK H., KUCZMA M., New approach to the analysis of raw data from the Ocular Response Analyzer, Biomedicine Hub 1(3), 2016, article 452124, DOI:10.1159/000452124.
  • [23] SPOERL E., TERAI N., SCHOLZ F., RAISKUP F., PILLUNAT L.E., Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software, Journal of Refractive Surgery 27(6), 2011, pp. 452–457, DOI:10.3928/1081597X-20110106-01.
  • [24] SEDAGHAT M., NADERI M., ZAREI-GHANAVATI M., Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis, Journal of Cataract and Refractive Surgery 36(10), 2010, pp. 1728–1731, DOI:10.1016/j.jcrs.2010.06.056.
  • [25] ASEJCZYK-WIDLICKA M., JÓŹWIK A., KASPRZAK H., SOBCZAK M., PIERŚCIONEK B., Data analysis of the Ocular Response Analyzer for improved distinction and detection of glaucoma, Journal of the Optical Society of America A 36(4), 2019, pp. B71–B76, DOI:10.1364/JOSAA.36.000B71.
  • [26] ANAND A., DE MORAES C.G.V., TENG C.C., TELLO C., LIEBMANN J.M., RITCH R., Corneal hysteresis and visual field asymmetry in open angle glaucoma, Investigative Ophthalmology and Visual Science 51(12), 2010, pp. 6514–6518, DOI:10.1167/iovs.10-5580.
  • [27] PRATA T.S., LIMA V.C., GUEDES L.M., BITELI L.G., TEIXEIRA S.H., DE MORAES C.G., RITCH R., PARANHOS Jr A., Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients, Clinical and Experimental Ophthalmology 40(7), 2012, pp. 682–688, DOI:10.1111/j.1442-9071.2012.02790.x.
  • [28] PARK K., SHIN J., LEE J., Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: a retrospective study, BMC Ophthalmology 18, 2018, article 7, DOI:10.1186/s12886-018-0673-x.
  • [29] AOKI S., MURATA H., MATSUURA M., FUJINO Y., NAKAKURA S., NAKAO Y., KIUCHI Y., ASAOKA R., The relationship between the waveform parameters from the Ocular Response Analyzer and the progression of glaucoma, Ophthalmology Glaucoma 1(2), 2018, pp. 123–131, DOI:10.1016/j.ogla.2018.08.006.
  • [30] SHAH S., LAIQUZZAMAN M., MANTRY S., CUNLIFFE I., Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension, Clinicaland Experimental Ophthalmology 36(6), 2008, pp. 508–513, DOI:10.1111/j.1442-9071.2008.01828.x.
  • [31] MANSOURI K., LEITE M.T., WEINREB R.N., TAFRESHI A., ZANGWILL L.M., MEDEIROS F.A., Association between corneal biomechanical properties and glaucoma severity, American Journal of Ophthalmology 153(3), 2012, pp. 419–427, DOI:10.1016/j.ajo.2011.08.022.
  • [32] GRISE-DULAC A., SAAD A., ABITBOL O., FEBBRARO J.L., AZAN E., MOULIN-TYRODE C., GATINEL D., Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes, Journal of Glaucoma 21(7), 2012,pp. 486–489, DOI:10.1097/IJG.0b013e318220daf0.
  • [33] SUN L., SHEN M., WANG J., FANG A., XU A., FANG H., LU F., Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma, American Journal of Ophthalmology 147(6), 2009, pp. 1061–1066, DOI:10.1016/j.ajo.2009.01.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d614f64-3b64-47d1-b41b-dfa4ab737d9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.