PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Maximizing performance of linear model predictive control of glycemia for T1DM subjects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of this paper is the custom design of an effective, yet relatively easy-to-implement, predictive control algorithm to maintain normoglycemia in patients with type 1 diabetes. The proposed patient-tailorable empirical model featuring the separated feedback dynamics to model the effect of insulin administration and carbohydrate intake was proven to be suitable for the synthesis of a high-performance predictive control algorithm for artificial pancreas. Within the introduced linear model predictive control law, the constraints were applied to the manipulated variable in order to reflect the technical limitations of insulin pumps and the typical nonnegative nature of the insulin administration. Similarly, inequalities constraints for the controlled variable were also assumed while anticipating suppression of hypoglycemia states during the automated insulin treatment. However, the problem of control infeasibility has emerged, especially if one uses too tight constraints of the manipulated and the controlled variable concurrently. To this end, exploiting the Farkas lemma, it was possible to formulate the helper linear programming problem based on the solution of which this infeasibility could be identified and the optimality of the control could be restored by adapting the constraints. This adaptation of constraints is asymmetrical, thus one can force to fully avoid hypoglycemia at the expense of mild hyperglycemia. Finally, a series of comprehensive in-silico experiments were carried out to validate the presented control algorithm and the proposed improvements. These simulations also addressed the control robustness in terms of the intersubject variability and the meal announcements uncertainty.
Rocznik
Strony
305--333
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wzory
Twórcy
autor
  • Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Slovakia
  • Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Slovakia
Bibliografia
  • [1] R. Sánchez-Peña and D. Chernavvsky: Artificial Pancreas: Current Situation and Future Directions. Academic Press, 2019.
  • [2] C. Cobelli, E. Renard and B. Kovatchev: Artificial Pancreas Past, Present, Future. Diabetes, 60(11), (2011), 2672-2682. DOI: 10.2337/db11-0654.
  • [3] C.K. Boughton and R. Hovorka: Advances in artificial pancreas systems. Science Translational Medicine, 11, (2019). DOI: 10.1126/sci-translmed.aaw4949.
  • [4] S.R. Mudaliar, F.A. Lindberg, M. Joyce, P. Beerdsen, P. Strange, A. Lin and R.R. Henry: Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care, 22(9), (1999), 1501-1506. DOI: 10.2337/diacare.22.9.1501.
  • [5] E.W.T. Braak, J.R. Woodworth, R. Bianchi, B. Cerimele, D.W. Erkelens, J.H.H. Thijssen and D. Kurtz: Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care, 19(12), (1996), 1437-1440. DOI: 10.2337/diacare.19.12.1437.
  • [6] C. Cobelli, M. Schiavon, C. Dalla Man, A. Basu and R. Basu: Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: Insight from an in silico study. Diabetes technology & therapeutics, 18 (2016). DOI: 10.1089/dia.2016.0112.
  • [7] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao and B.P. Kovatchev: Diabetes: Models, signals, and control. IEEE Reviews in Biomedical Engineering, 2 (2009), 54-96. DOI: 10.1109/RBME.2009.2036073.
  • [8] C. Fabris and B. Kovatchev: Glucose Monitoring Devices: Measuring Blood Glucose to Manage and Control Diabetes. Academic Press, 2020.
  • [9] B.W. Bequette: A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technology & Therapeutics, 7(1), (2005), 28-47. DOI: 10.1089/dia.2005.7.28
  • [10] B.W. Bequette: Challenges and recent progress in the development of a closed-loop artificial pancreas. Annual Reviews in Control, 36(2), (2012), 255-266. DOI: 10.1016/j.arcontrol.2012.09.007.
  • [11] G. Steil, A. Panteleon and K. Rebrin: Closed-loop insulin delivery-the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), (2004), 125-144. DOI: 10.1016/j.addr.2003.08.011.
  • [12] G. M. Steil, K. Rebrin, C. Darwin, F. Hariri and M. F. Saad: Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes, 55(12), (2006), 3344-3350. DOI: 10.2337/db06-0419.
  • [13] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser and D. E. Seborg: An improved PID switching control strategy for type 1 diabetes. IEEE Transactions on Biomedical Engineering, 55(3), (2008), 857-865. DOI: 10.1109/TBME.2008.915665.
  • [14] R. Hovorka: Management of diabetes using adaptive control. International Journal of Adaptive Control and Signal Processing, 19(5), (2005), 309-325. DOI: 10.1002/acs.851.
  • [15] M. Tárník, J. Murgaš, E. Miklovičová and L. Farkas: Adaptive control of time-delayed systems with application for control of glucose concentration in type 1 diabetic patients. IFAC Proceedings Volumes, 11th IFAC Workshop on Adaptation and Learning in Control and Signal Processing, 46(11), (2013), 452-457. DOI: 10.3182/20130703-3-FR-4038.00033.
  • [16] M. Tárník, E. Miklovičová, J. Murgaš, I. Ottinger and T. Ludwig: Model reference adaptive control of glucose in type 1 diabetics: A simulation study. IFAC Proceedings Volumes, 19th IFAC World Congress., 47(3), (2014), 5055-5060. DOI: 10.3182/20140824-6-ZA-1003.00321.
  • [17] A. Ilka, I. Ottinger, T. Ludwig, M. Tárník, V. Veselý, E. Miklovičová and J. Murgaš: Robust controller design for T1DM individualized model:gain-scheduling approach. International Review of Automatic Control (IREACO), 8(2), (2015). DOI: 10.15866/ireaco.v8i2.5554.
  • [18] G. De Nicolao, L. Magni, C.D. Man and C. Cobelli: Modeling and control of diabetes: Towards the artificial pancreas. IFAC Proceedings Volumes, 18th IFAC World Congress, 44(1), (2011), 7092-7101. DOI: 10.3182/20110828-6-IT-1002.03036.
  • [19] E. Miklovičová and M. Tárník: GPC for diabetes control without meal annoucement - control loop design and control performance study. In Recent Advances in Mechanical Engineering and Automatic Control, Proceedings of the 3rd European Conference of Control (ECC ’12), Paris, France, WSEAS Press, 12 (2012), 58-63.
  • [20] H. Kirchsteiger and L. Del Re: A model based bolus calculator for blood glucose control in type 1 diabetes. In 2014 American Control Conference, (2014), 5465-5470. DOI: 10.1109/ACC.2014.6858980.
  • [21] R.S. Parker, F.J. Doyle and N.A. Peppas: A model-based algorithm for blood glucose control in type i diabetic patients. IEEE Transactions on Biomedical Engineering, 46(2), (1999), 148-157. DOI: 10.1109/10.740877.
  • [22] L. Magni, D.M. Raimondo, L. Bossi, C.D. Man, G.D. Nicolao, B. Kovatchev and C. Cobelli: Model predictive control of type 1 diabetes: An in silico trial. Journal of Diabetes Science and Technology, 1(6), (2007), 804-812. DOI: 10.1177/193229680700100603.
  • [23] M. Messori, E. Fornasiero, C. Toffanin, C. Cobelli and L. Magni: A constrained model predictive controller for an artificial pancreas. IFAC Proceedings Volumes, 47(3), (2014), 10 144-10 149. DOI: 10.3182/20140824-6-ZA-1003.01880.
  • [24] D. Boiroux, A.K. Duun-Henriksen, S. Schmidt, K. Norgaard, S. Madsbad, N.K. Poulse, H. Madsen and J.B. Jorgensen: Overnight glucose control in people with type 1 diabetes. Biomedical Signal Processing and Control, 39, (2018), 503-512. DOI: 10.1016/j.bspc.2017.08.005.
  • [25] D. Boiroux, S. Schmidt, A. Duun-Henriksen, L. Frøssing, K. Nørgaard, S. Madsbad, O. Skyggebjerg, N. Poulsen, H. Madsen and J. Jørgensen: Control of blood glucose for people with type 1 diabetes: an in vivo study. 17th Nordic Process Control Workshop Kongens Lyngby, Denmark, (2012), 133-140. http://npcw17.imm.dtu.dk.
  • [26] M. Ławryńczuk, P. Marusak and P. Tatjewski: Efficient predictive control algorithms based on soft computing approaches: Application to glucose concentration stabilization. In Technological Developments in Education and Automation, (2010), 425-430. DOI: 10.1007/978-90-481-3656-8.
  • [27] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M.O. Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering and M.E. Wilinska: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), (2004), 905-920. DOI: 10.1088/0967-3334/25/4/010.
  • [28] L. Magni, D. Raimondo, C.D. Man, G. De Nicolao, B. Kovatchev and C. Cobelli: Model predictive control of glucose concentration in subjects with type 1 diabetes: an in silico trial. IFAC Proceedings Volumes, 17th IFAC World Congress, 41(2), (2008), 4246-4251. DOI: 10.3182/20080706-5-KR1001.00714.
  • [29] M. Cescon and R. Johansson: Linear modeling and prediction in diabetes physiology. Ser. Lecture Notes in Bioengineering, Marmarelis, V and Mitsis, G, Springer, 2014, 187-222. DOI: 10.1007/978-3-642-54464-4_9.
  • [30] H. Kirchsteiger, J. Jørgensen, E. Renard and L. Del Re, Eds.: Prediction methods for blood glucose concentration: Design, use and evaluation. Ser. Lecture Notes in Bioengineering, Springer, 2016.
  • [31] D. Romeres, M. Schiavon, A. Basu, C. Cobelli, R. Basu and C. D. Man: Exercise effect on insulin-dependent and insulin-independent glucose utilization in healthy and type 1 diabetes individuals. a modeling study. American Journal of Physiology. Endocrinology and Metabolism, 321(1), (2021), E122-E129. DOI: 10.1152/ajpendo.00084.2021.
  • [32] C. Toffanin, L. Magni and C. Cobelli: Artificial pancreas: In silico study shows no need of meal announcement and improved time in range of glucose with intraperitoneal vs. subcutaneous insulin delivery. IEEE Transactions on Medical Robotics and Bionics, 3(2), (2021), 306-314. DOI: 10.1109/TMRB.2021.3075775.
  • [33] H. Lee, B.A. Buckingham, D.M. Wilson and B.W. Bequette: A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator. Journal of Diabetes Science and Technology, 3(5), (2009), 1082-1090. DOI: 10.1177/193229680900300511.
  • [34] R. Haber, R. Bars and U. Schmitz: Predictive Equations of Linear SISO Models. John Wiley & Sons, Ltd, 2011, ch. 3, 55-101.
  • [35] P. Tatjewski: Effectiveness of dynamic matrix control algorithm with Laguerre functions. Archives of Control Sciences, 31(4), (2021), 795-814. DOI: 10.24425/acs.2021.139731.
  • [36] R. Nebeluk and P. Marusak: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors. Archives of Control Sciences, 30(2), (2020), 325-363. DOI: 10.24425/acs.2020.133502.
  • [37] R. Haber, R. Bars and U. Schmitz: Generalized Predictive Control of Linear SISO Processes. John Wiley & Sons, Ltd, 2011, ch. 5, 135-220.
  • [38] V. Bátora, M. Tárnik, J. Murgaš, S. Schmidt, K. Nørgaard, N.K. Poulsen, H. Madsen and J.B. Jørgensen: Bihormonal model predictive control of blood glucose in people with type 1 diabetes. In 2014 IEEE Conference on Control Applications (CCA), (2014), 1693-1698. DOI: 10.1109/CCA. 2014.6981556.
  • [39] F.H. El-Khatib, S.J. Russell, D.M. Nathan, R.G. Sutherlin and E.R. Damiano: A Bihormonal Closed-Loop Artificial Pancreas for Type 1 Diabetes. Science Translational Medicine, 2(27), (2010). DOI: 10.1126/scitranslmed.3000619.
  • [40] J. Matousek and B. Gärtner: Understanding and Using Linear Programming. Ser. Universitext, Springer Berlin Heidelberg, 2006.
  • [41] C. Dalla Man, R. Rizza and C. Cobelli: Mixed meal simulation model of glucose-insulin system. In 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’06. Ser. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, (2006), 307-310. DOI: 10.1109/IEMBS.2006.260810.
  • [42] C. Dalla Man, R. A. Rizza and C. Cobelli: Meal simulation model of the glucose-insulin system. IEEE Transactions on Biomedical Engineering, 54(10), (2007), 1740-1749. DOI: 10.1109/TBME.2007.893506.
  • [43] C.D. Man, D.M. Raimondo, R.A. Rizza and C. Cobelli: GIM, simulation software of meal glucose-insulin model. Journal of Diabetes Science and Technology, 1(3), (2007), 323-330. DOI: 10.1177/193229680700100303.
  • [44] M. Dodek and E. Miklovičová: Physiology-compliant empirical model for glycemia prediction. International Review of Automatic Control (IREACO), 14(6), (2021). DOI: 10.15866/ireaco.v14i6.21283.
  • [45] L. Magni, D.M. Raimondo, C.D. Man, M. Breton, S. Patek, G.D. Nicolao, C. Cobelli and B.P. Kovatchev: Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis. Journal of Diabetes Science and Technology, 2(4), (2008), 630-635. DOI: 10.1177/193229680800200414.
Uwagi
1. The research is supported by the grant VEGA 1/0049/20 - Modelling and control of biosystems, granted by the Ministry of Education, Science, Development and Sport of the Slovak Republic.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d607a11-fa95-4221-a85c-1f809e219ebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.