PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-resolution mapping of seasonal snow cover extent in the Pamir Hindu Kush using machine learning-based integration of multi-sensor data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes a framework to develop a high-resolution snow cover area (SCA) product from freely available spaceborne remote sensing data and utilizes the Sentinel-1 multi-temporal products and MODIS surface reflectance data. The proposed methodology focuses on using the sensitivity of the parameters retrievable from the Sentinel-1 datasets to snow. Different parameters such as the dual polarimetric entropy, mean scattering angle, backscatter coefficients, and the interferometric coherence are integrated with a spatially resampled normalized difference snow index (NDSI) from MODIS data to estimate an equivalent NDSI, which is used for the determination of the SCA at 15 m spatial resolution. The equivalent NDSI is derived using a machine learning-based regression based on support vector machines (SVMs) and the multilayer perceptron (MLP). The experiments are performed for the high elevated regions of the Kunduz and Khanabad watershed of the northern Hindu Kush mountains for the peak winter and early melt season of 2019, corresponding to February and March. The reference SCA for evaluating the results is generated by thresholding the NDSI derived from pan-sharpened Landsat-8 imagery. As compared to MLP, the SCA generated based on the SVM regression showed better performance. Further, compared to spatially resampled MODIS NDSI, both the SVM and MLP results showed better accuracy for snow classification, as determined by the mean conditional kappa coefficients of 0.75, 0.83, respectively, over 0.62.
Czasopismo
Rocznik
Strony
1455--1470
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Department of Bio-Production and Environment Engineering, Tokyo University of Agriculture, Tokyo 156-8502, Japan
  • Faculty of Engineering Geology and Mines, Jowzjan University, Jowzjan 1901, Afghanistan
autor
  • Pragyan Das, Bristlecone, Bangalore 560048, India
  • Department of Civil Engineering, Indian Institute of Technology Jammu, Nagrota, Jammu 181221, India
  • Department of Civil Engineering, Indian Institute of Technology Jammu, Nagrota, Jammu 181221, India
  • Department of Bio-Production and Environment Engineering, Tokyo University of Agriculture, Tokyo 156-8502, Japan
Bibliografia
  • 1. Adler-Golden SM, Robertson DC, Richtsmeier SC, Ratkowski AJ (2009) Cloud effects in hyperspectral imagery from first-principles scene simulations. In: SS Shen, PE Lewis (Eds.), SPIE Defense, Security, and Sensing, Orlando, Florida, USA, Monday 13 April 2009 (73340Z, SPIE Proceedings): SPIE. https://doi.org/ 10.1117/12.819832
  • 2. Ahmad JA, Forman BA, Kwon Y (2019) Analyzing machine learning predictions of passive microwave brightness temperature spectral difference over snow-covered terrain in high mountain Asia. Front Earth Sci 7:249. https://doi.org/10.3389/feart.2019.00212
  • 3. Ahmad M, Wasiq M (2004). Water resource development in Northern Afghanistan and its implications for Amu Darya basin. (None)(36).
  • 4. Arsenault KR, Houser PR, de Lannoy GJM (2014) Evaluation of the MODIS snow cover fraction product. Hydrol Process 28:980-998. https://doi.org/10.1002/hyp.9636
  • 5. Awasthi S, Varade D (2021) Recent advances in the remote sensing of alpine snow: a review. Giscie Remote Sens 58:852-888. https:// doi.org/10.1080/15481603.2021.1946938
  • 6. Baldwin ME, Kain JS (2006) Sensitivity of several performance measures to displacement error, bias, and event frequency. Weather Forecast 21:636-648. https://doi.org/10.1175/WAF933.1
  • 7. Berris SN, Harr RD (1987) Comparative snow accumulation and melt during rainfall in forested and clear-cut plots in the Western Cascades of Oregon. Water Resour Res 23:135-142. https://doi.org/ 10.1029/WR023i001p00135
  • 8. Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V et al (2011) Multiple effects of changes in arctic snow cover. Ambio 40:32-45. https://doi. org/10. 1007/ s13280-011-0213-x
  • 9. Choi H, Bindschadler R (2004) Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens Environ 91:237-242. https://doi.org/10.1016/j.rse. 2004.03.007
  • 10. Chrysoulakis N, Abrams M, Feidas H, Arai K (2010) Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece. Int J Remote Sens 31:6347-6385. https://doi.org/ 10.1080/01431160903413697
  • 11. Cooley T, Anderson GP, Felde GW, Hoke ML, Ratkowski AJ, Chetwynd JH, et al. (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: (pp. 1414-1418): IEEE. https://doi.org/10.1109/IGARSS.2002. 1026134
  • 12. Corcoran P (2020) An end-to-end graph convolutional kernel support vector machine. Appl Network Sci 5:786. https://doi.org/10.1007/ s41109-020-00282-2
  • 13. Di Marco N, Avesani D, Righetti M, Zaramella M, Majone B, Borga M (2021) Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model. J Hydrol 599:126020. https://doi.org/ 10.1016/j.jhydrol.2021.126020
  • 14. Dietz AJ, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow-a review of available methods. Int J Remote Sens 33:40944134. https://doi.org/10.1080/01431161.2011.640964
  • 15. Diro GT, Sushama L (2020) Contribution of snow cover decline to projected warming over North America. Geophys Res Lett 47:38. https://doi.org/10.1029/2019GL084414
  • 16. Eker R, Bühler Y, Schlögl S, Stoffel A, Aydin A (2019) Monitoring of snow cover ablation using very high spatial resolution remote sensing datasets. Remote Sensing 11:699. https://doi.org/10.3390/ rs11060699
  • 17. Gaffey C, Bhardwaj A (2020) Applications of unmanned aerial vehicles in cryosphere: latest advances and prospects. Remote Sens 12:948. https://doi.org/10.3390/rs12060948
  • 18. Gaur S, Johannet A, Graillot D, Omar PJ (2021) Modeling of groundwater level using artificial neural network algorithm and WA-SVR model. In: Pande CB, Moharir KN (eds) Groundwater Resources Development and Planning in the Semi-Arid Region. Springer International Publishing, Cham, pp 129-150
  • 19. Gurung DR, Maharjan SB, Shrestha AB, Shrestha MS, Bajracharya SR, Murthy MSR (2017) Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. Int J Climatol 37:3873-3882. https://doi.org/10.1002/joc.4961
  • 20. Hall DK, Riggs GA, Foster JL, Kumar SV (2010) Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens Environ 114:496-503. https://doi.org/10.1016/j.rse. 2009.10.007
  • 21. Hassanyar MH, Tsutsumi J-I (2017) Multi-model ensemble climate change projection for Kunduz River Basin, Afghanistan under representative concentration pathways. Modern Environ Sci Eng 3:291-301
  • 22. Hassanyar MH, Giorgos Tsutsumi J-I, Nakamatsu R, Omid SM (2018) The analysis of temporal variability, trend of precipitation and River Discharge of Kunduz River Basin, Afghanistan. Int J Eng Technol Manage Res 5:69-78
  • 23. Homan JW, Luce CH, McNamara JP, Glenn NF (2011) Improvement of distributed snowmelt energy balance modeling with MODISbased NDSI-derived fractional snow-covered area data. Hydrol Process 25:650-660. https://doi.org/10.1002/hyp.7857
  • 24. Junttila V, Kauranne T (2018) Distribution statistics preserving post-processing method with plot level uncertainty analysis for remotely sensed data-based forest inventory predictions. Remote Sens 10:1677. https://doi.org/10.3390/rs10111677
  • 25. Keuris L, Hetzenecker M, Nagler T, Mölg N, Schwaizer G (2023) An adaptive method for the estimation of snow-covered fraction with error propagation for applications from local to global scales. Remote Sensing 15:1231. https://doi.org/10.3390/rs15051231
  • 26. Klein AG, Hall DK, Seidel K (1996). Algorithm intercomparision for accuracy assessment of the MODIS snow-mapping algorithm.
  • 27. Krasnopol'sky VM (2013) The application of neural networks in the earth system sciences: Neural networks emulations for complex multidimensional mappings / Vladimir M. Springer, Krasnopol-sky (Atmospheric and oceanographic sciences library, Dordrecht
  • 28. Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26:195-197. https://doi.org/10.1038/nbt1386
  • 29. Kuter S, Bolat K, Akyurek Z (2022) A machine learning-based accuracy enhancement on EUMETSAT H-SAF H35 effective snow-covered area product. Remote Sens Environ 272:112947. https:// doi.org/10.1016/j.rse.2022.112947
  • 30. Li J, Chen B (2020) Global revisit interval analysis of Landsat-8-9 and Sentinel-2A -2B data for terrestrial monitoring. Sensors Basel, Switzerland. https://doi.org/10.3390/s20226631
  • 31. Li H, Zheng H, Han C, Wang H, Miao M (2018) Onboard spectral and spatial cloud detection for hyperspectral remote sensing images. Remote Sensing 10:152. https://doi.org/10.3390/rs10010152
  • 32. Liu Y, Chen X, Hao J-S, Li L-H (2020) Snow cover estimation from MODIS and Sentinel-1 SAR data using machine learning algorithms in the western part of the Tianshan Mountains. J Mt Sci 17:884-897. https://doi.org/10.1007/s11629-019-5723-1
  • 33. Mahmoodzada AB, Varade D, Shimada S (2020) Estimation of snow depth in the Hindu Kush Himalayas of Afghanistan during peak winter and early melt season. Remote Sens 12:2788. https://doi. org/10.3390/rs12172788
  • 34. Mahmoodzada AB, Varade D, Shimada S, Rezazada FA, Mahmoodzada AS, Jawher AN et al (2022) Capability assessment of Sentinel-1 data for estimation of snow hydrological potential in the Khanabad watershed in the Hindu Kush Himalayas of Afghanistan. Remote Sensing Applications: Society and Environment 26:100758. https://doi.org/10.1016/j.rsase.2022.100758
  • 35. Manaswi NK (2018) Regression to MLP in Keras. In: Manaswi NK (ed) Deep Learning with Applications Using Python. Apress, Berkeley, CA, pp 69-89
  • 36. Mätzler C (1987) Applications of the interaction of microwaves with the natural snow cover. Remote Sens Rev 2:259-387. https://doi. org/10.1080/02757258709532086
  • 37. Mayewski PA, Perry LB, Matthews T, Birkel SD (2020) Climate change in the Hindu Kush Himalayas: basis and gaps. One Earth 3:551-555. https://doi.org/10.1016/j.oneear.2020.10.007
  • 38. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: A review. ISPRS J Photogramm Remote Sens 66:247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
  • 39. Muhuri A, Surendar M, Bhattacharya A (2017) Scattering mechanism based snow cover mapping using RADARSAT-2 C-band polarimetric SAR data. IEEE J Select Topics Appl Earth Observ Remote Sens 10:3213-3224. https://doi.org/10.1109/JSTARS. 2017.2681719
  • 40. Nagler T, Rott H, Ripper E, Bippus G, Hetzenecker M (2016) Advancements for snowmelt monitoring by means of Sentinel-1 SAR. Remote Sens 8:348. https://doi.org/10.3390/rs8040348
  • 41. Nagler T, Rott H, Ossowska J, Schwaizer G, Small D, Malnes E, et al. (2018). Snow cover monitoring by synergistic use of Sentinel-3 Slstr and Sentinel-L Sar Data. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 22/07/2018 - 27/07/2018 (pp. 8727-8730): IEEE. https://doi.org/ 10.1109/IGARSS.2018.8518203
  • 42. Nayeb Yazdi M, Ketabchy M, Sample DJ, Scott D, Liao H (2019) An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ Model Softw 118:211225. https://doi.org/10.1016/j.envsoft.2019.05.008
  • 43. Nijhawan R, Raman B, Das J (2018). Meta-Classifier approach with ANN, SVM, rotation forest, and random forest for snow cover mapping. In BB Chaudhuri, MS Kankanhalli, B Raman (Eds.). In: Proceedings of 2nd International Conference on Computer Vision & Image Processing (Vol. 704, pp. 279-287, Advances in Intelligent Systems and Computing). Singapore: Springer Singapore.
  • 44. Novelli A, Aguilar MA, Nemmaoui A, Aguilar FJ (2016) Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería. Int J Appl Earth Observ Geoinf 52:403-411. https://doi.org/10.1016/j. jag.2016.07.011
  • 45. Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113:868-879. https:// doi.org/10.1016/j.rse.2009.01.001
  • 46. Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy sets, and classification. IEEE Trans Neural Networks 3:683-697. https://doi. org/10.1109/72.159058
  • 47. Parajka J, Blöschl G (2008) Spatio-temporal combination of MODIS images-Potential for snow cover mapping. Water Resour Res 44:1-13. https://doi.org/10.1029/2007WR006204
  • 48. Rees WG, Steel AM (2010) Radar backscatter coefficients and snow detectability for upland terrain in Scotland. Int J Remote Sens 22:3015-3026. https://doi.org/10.1080/01431160120567
  • 49. Riggs GA, Hall DK, Román MO (2017) Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth Syst Sci Data 9:765-777. https:// doi.org/10.5194/essd-9-765-2017
  • 50. Shi J, Dozier J (1995) Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:905-914. https://doi.org/10.1109/36.406676
  • 51. Singh G, Venkataraman G, Yamaguchi Y, Park S-E (2014) Capability assessment of fully polarimetric ALOS-PALSAR data for discriminating wet snow from other scattering types in mountainous regions. IEEE Trans Geosci Remote Sens 52:1177-1196. https:// doi.org/10.1109/TGRS.2013.2248369
  • 52. Solberg R, Koren H, Malnes E, Haarpaintner J, Lauknes I (2006). An approach for multisensor harmonization in snow cover area mapping. In: 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31/07/2006 - 04/08/2006 (pp. 2171-2175): IEEE. https://doi.org/10.1109/IGARSS.2006.561
  • 53. Steele C, Dialesandro J, James D, Elias E, Rango A, Bleiweiss M (2017) Evaluating MODIS snow products for modelling snowmelt runoff: case study of the Rio Grande headwaters. Int J Appl Earth Obs Geoinf 63:234-243. https://doi.org/10.1016/j.jag.2017. 08.007
  • 54. Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res. https://doi.org/10.1029/2000jd000286
  • 55. Sun W, Chen B, Messinger DW (2014) Nearest-neighbor diffusionbased pan-sharpening algorithm for spectral images. Opt Eng 53:13107. https://doi.org/10.1117/1.oe.53.1.013107
  • 56. Taia S, Erraioui L, Arjdal Y, Chao J, El Mansouri B, Scozzari A (2023) The application of SWAT model and remotely sensed products to characterize the dynamic of streamflow and snow in a mountainous watershed in the high atlas. Sensors Basel, Switzerland. https://doi.org/10.3390/s23031246
  • 57. Tsai YLS, Dietz A, Oppelt N, Kuenzer C (2019) Remote sensing of snow cover using spaceborne SAR: a review. Remote Sensing. https://doi.org/10.3390/rs11121456
  • 58. Ulaby FT, Long DG, Blackwell WJ, Elachi C, Fung AK, Ruf C et al (2014) Microwave radar and radiometric remote sensing. The University of Michigan Press, Ann Arbor
  • 59. Varade D, Dikshit O (2019a) Dry/wet snow mapping based on the synergistic use of dual polarimetric SAR and multispectral data. J Mt Sci 16:1435-1451. https://doi.org/10.1007/s11629-019-5373-3
  • 60. Varade D, Dikshit O (2019b) Potential of multispectral reflectance for assessment of snow geophysical parameters in Solang valley in the lower Indian Himalayas. Gisci Remote Sens 57:107-126. https:// doi.org/10.1080/15481603.2019.1672365
  • 61. Varade D, Maurya AK, Dikshit O (2018) Development of spectral indexes in hyperspectral imagery for land cover assessment. IETE Tech Rev. https://doi.org/10.1080/02564602.2018.1503569
  • 62. Varade D, Sure A, Dikshit O (2019a) Potential of Landsat-8 and Sen-tinel-2A composite for land use land cover analysis. Geocarto Int 34:1552-1567. https://doi.org/10.1080/10106049.2018.1497096
  • 63. Varade D, Maurya AK, Dikshit O (2019b) Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification. Geocarto Int. https://doi.org/10.1080/10106049.2019.1665717
  • 64. Varade D, Singh G, Dikshit O, Manickam S (2020a) Identification of snow using fully polarimetric SAR data based on entropy and anisotropy. Water Resour Res 56:127. https://doi.org/10.1029/ 2019WR025449
  • 65. Varade D, Maurya AK, Dikshit O, Singh G, Manickam S (2020b) Snow depth in Dhundi: an estimate based on weighted bias corrected differential phase observations of dual polarimetric bi-temporal Sentinel-1 data. Int J Remote Sens 41:3031-3053. https://doi.org/ 10.1080/01431161.2019.1698076
  • 66. Vikhamar D, Solberg R (2003) Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens Environ 88:309-323. https://doi.org/10.1016/j.rse.2003.06.004
  • 67. Wendleder A, Dietz AJ, Schork K (2018). Mapping snow cover extent using optical and SAR data. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 22-07-2018-27-07-2018 (pp. 5104-5107): IEEE. https://doi.org/ 10.1109/IGARSS.2018.8518374
  • 68. Xiao X, He T, Liang S, Zhao T (2022) Improving fractional snow cover retrieval from passive microwave data using a radiative transfer model and machine learning method. IEEE Trans Geosci Remote Sens 60:1-15. https://doi.org/10.1109/TGRS.2021.3128524
  • 69. Zhang T, Ren H, Qin Q, Sun Y (2018) Snow cover monitoring with Chinese Gaofen-4 PMS imagery and the restored snow index (RSI) method: case studies. Remote Sensing 10:1871. https://doi. org/10.3390/rs10121871
  • 70. Zhu L, Xiao P, Feng X, Zhang X, Wang Z, Jiang L (2014) Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image. J Appl Remote Sens 8:84698. https://doi.org/10.1117/1. JRS.8.084698
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d5cb89b-123d-49b5-8bfe-38f35f53f4a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.