PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of factors determine the mechanical, but also physical and chemical properties. One of the most important are the steel microstructure and its working conditions. A few corrosion processes in crevices and awkward corners can be avoided at the design stage (low roughness parameters, roundsection and other). But still the construction material is exposed to corrosion. These steels often come into contact with an aggressive environment based on nitric acid. Stainless steel is more and more often used in many sectors of industry. The purpose of this article is to investigate corrosion resistance in different time (48, 96, 144, 192, 240, 288, 336, 384 and 432 hours) using weight loss and profile roughness parameters of martensitic steel in grade X55CrMo14 in nitric acid 65% pure-basic at temperature 348 K. Corrosion tests show that the tested steel in nitric acid as a corrosive environments is characterized through continuous corrosion process whose measure may be surface roughness.
Rocznik
Strony
108--111
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 St., 10-957 Olsztyn, Poland
Bibliografia
  • 1. Dalmau, A., Richard, C., Igual–Muñoz, A., 2018. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal, Tribology International, 121, 167-179.
  • 2. Dudek, A., Wrońska, A., Adamczyk, L., 2014. Surface remelting of 316L+434L sintered steel: microstructure and corrosion resistance, Journal Solid State Electronics, 18(11), 2973-2981.
  • 3. Duryahina, Z.A., Makhorkin, I.M., Lazko, H.V., Bychyns'kyi, V.I., 2007. Evaluation of temperature fields in corrosion-resistant steels under the action of laser radiation, Materials Science, 43(6), 800-806.
  • 4. El-Meligy, M., El-Bitar, T., 2020. Hot workability of 420 J1 martensitic stainless steel, Procedia Manufacturing, 50, 771-776.
  • 5. Führer, U., Aktaa, J., 2018. Modeling the cyclic softening and lifetime of ferritic-martensitic steels under creep-fatigue loading, International Journal of Mechanical Sciences, 136, 460-474.
  • 6. Cheng X.L., Ma H.Y., Chen S.H., Chen X., Chen S.H., Yang H.Q., 1998. Corrosion of Iron in Acid Solutions with Hydrogen Sulfide Corrosion Sciences, 41(2), 321-329.
  • 7. Christopher, J., Choudhary, B.K., 2018. On the onset of necking instability in tempered martensitic 9% Cr steels, Mechanics Research Communications, 94, 114-119.
  • 8. Krynke, M., Selejdak, J., Borkowski, S., 2012. The Quality of Materials Applied for Slewing Bearing Raceway, Materials Engineering, 19(4), 157-163.
  • 9. Lipiński, T., 2016. Corrosion Resistance of 1.4362 Steel in Boiling Nitric Acid, Manufacturing Technology, 16(5), 1004-1009.
  • 10. Lipiński, T., 2017. Corrosion Effect of 20% NaCl Solution on Basic Carbon Structural S235JR Steel. 16th International Scientific Conference Engineering for Rural Development, Proceedings 16, Jelgava, 24- 26.05.2017, 1069-1074.
  • 11. Lipiński, T., Wach, A., 2015. Dimensional Structure of Non-Metallic Inclusions in High-Grade Medium Carbon Steel Melted in an Electric Furnace and Subjected to Desulfurization, Solid State Phenomena, 223, 46-53.
  • 12. Liu, Z., Wang, X., Dong, C., 2020. Effect of boron on G115 martensitic heat resistant steel during aging at 650 °C, Materials Science and Engineering, 787, 139529.
  • 13. Majewski, G., Orman, Ł.J., Telejko, M., Radek, N., Pietraszek, J., Dudek A., 2020. Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13(8), 1973.
  • 14. Martensitic stainless steel, www.outokumpu.com, (accesss 15.02.2021)
  • 15. Miletić, I., Ilić, A., Nikolić, R.R., Ulewicz, R., Ivanović, L., Sczygiol, N., 2020. Analysis of Selected Properties of Welded Joints of the HSLA Steels, Materials, 13, 1301, DOI: 10.3390/ma13061301
  • 16. Pan, L., Kwok, C.T., Lo, K.H., 2020. Friction-stir processing of AISI 440C high-carbon martensitic stainless steel for improving hardness and corrosion resistance, Journal of Materials Processing Technology, 277, 116448
  • 17. Pietraszek, J., Gądek-Moszczak, A., Radek, N., 2015. the estimation of accuracy for the neural network approximation in the case of sintered metal properties. Recent Developments in Computa-tional Collective Intelligence, 125-134.
  • 18. Pietraszek, J., Skrzypczak-Pietraszek, E., 2014. The Optimization of the Technological Process with the Fuzzy Regression, Advanced Materials Research, 874, 151-155.
  • 19. Saha, N., Basu, J., Sen, P., Majumdar, G., 2020, Electrochemical behaviour of martensitic stainless steel with blood, Materials Today: Proceedings, 26(2), 677-680.
  • 20. Scendo, M., Trela, J., Radek, N., 2012. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions, Corrosion Reviews, 30(1-2), 33-45.
  • 21. Scendo, M., Trela, J., Radek, N., 2014. Influence of laser power on the corrosive resistance of WC-Cu coating, Surface & Coatings Technology 259, 401-407.
  • 22. Seidametova, G., Vogt, J., Serre, I., 2018. The early stage of fatigue crack initiation in a 12%Cr martensitic steel, International Journal of Fatigue, 106, 38-48.
  • 23. Selejdak, J., 2003. Influencing factors onto quality of welded pipes, Metalurgija, 42(1), 65-67.
  • 24. Szabracki, P., Lipiński, T., 2013. Effect of Aging on the Microstructure and the Intergranular Corrosion Resistance of X2CrNiMoN25-7-4 Duplex Stainless Steel, Solid State Phenomena, 203-204, 59-62.
  • 25. Szabracki, P., Lipiński, T., 2014. Influence of sigma phase precipitation on the intergranular corrosion resistance of X2CrNiMoN25-7-4 super duplex stainless steel. 23rd International Conference on Metallurgy and Materials METAL, 2014, 476-481.
  • 26. Lipiński, T., 2016. Corrosion rate of the X2CrNiMoN22-5-3 duplex stainless steel annealed at 500°C, Acta Phisica Polonica A, 130(4), 993-995.
  • 27. Uhlig, H.H., Revie, R.W., 1985. Corrosion and corrosion control, 3rd Edition, John Wiley and Sons.
  • 28. Ulewicz, R., Mazur, M., Bokůvka, O., 2013. Structure and mechanical properties of fine-grained steels, Periodica Polytechnica Transportation Engineering, 41(2), 111-115.
  • 29. Ulewicz, R., Nový, F., 2017. Fatigue resistance and influence of cutting technology on the mechanical properties of modern steels used in the automotive industry, Procedia Engineering, 192, 899-904.
  • 30. Ulewicz, R., Nový, F., 2019, Quality management systems in special processes, Transportation Research Procedia, 40, 113-118.
  • 31. Ulewicz, R., Nový, F., Selejdak, J., 2014, Fatigue strength of ductile iron in ultra-high cycle regime, Advanced Materials Research, 874, 43-48
  • 32. Vicen, M., Bronček, J., Nový, F., 2019. Investigation of tribological properties of CarbonX coating deposited on 100Cr6 steel, Production Engineering Archives, 25(25), 52-55.
  • 33. Yang, Y., Cheng,Y.F., 2012. Parametric effects on the erosion–corrosion rate and mechanism of carbon steel pipes in oil sands slurry, Wear, 276-277, 141–148.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d5a0690-0c22-4796-8546-dae286e27625
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.