Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Discussing the problem of the external gravitational potential of the rotating Earth, we have to consider the fundamental postulate of the finite speed of the propagation of gravitation. This can be done using the expressions for the gravitational aberration compared to the Liénard-Wiechert solution of the retarded potentials. The term gravitational counter-aberration or co-aberration is introduced to describe the pattern of the propagation of the gravitational signal emitted by the rotating Earth. It is proved that in the first approximation, the classic theory of the aberration of light can be applied to calculate this effect. Some effects of the gravitational aberration on the external gravity field of the rotating Earth may influence the orbit determination of the Earth artificial satellites.
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Space Research Center, Polish Academy of Science, Warsaw, Poland
autor
- Central of Astronomical Observatory at Pulkovo, Russian Academy of Science, ST. Petersburg, Russia
Bibliografia
- Ashby N. (2004). The Sagnac effect in the Global Positioning System. in Rizzi, G., Ruggiero, M.L.(eds) Relativity in Rotating Frames, series Fundamental Theories of Physics vol.135, pp.11-28, Kluwer.
- Brumberg V.A. (1991). Essential Relativistic Celestial Mechanics. Taylor & Francis Group.
- Brumberg V.A., Kopeikin S.M. (1989). Relativistic reference systems and motion of test bodies in the vicinity of the Earth. II Nuovo Cimento, 103B, pp.63-98.
- Fomalont E.B., Kopeikin S.M. (2003). The measurement of the light deflection from Jupiter: Experimental results.Astrophysical Journal, 598, pp.704-711.
- Grøn Ø. (2009). Lecture Notes on the General Theory of Relativity. Lecture Notes in Physics. 772, Springer Science-Business Media.
- Kopeikin S., Efroimsky M., Kaplan G. (2011). Relativistic Celestial Mechanics of the Solar System. Wiley VCH.
- Kopeikin, S.M., Fomalont, E.B. (2006). Aberration and the Fundamental Speed of Gravity in the Jovian Deflection Experiment.Foundations of Physics, 36, pp.1244-1285.
- Kopeikin, S.M., Fomalont, E.B. (2007). Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments. General Relativity and Gravitation, 39, pp.1583-1624.
- Kur, T., Liwosz, T., Kalarus, M. (2020) The application of inter-satellite links connectivity schemes in various satellite navigation systems for orbit and clock corrections determination: simulation study. Acta Geod Geophys (2020). https://doi.org/10.1007/s40328-020-00322-4
- Landau L.D., Lifszyc J.M. (2009). Teoria Pola. PWN Warszawa.
- Landau, L.D., Lifshitz, E.M. (1975) The classical theory of fields. Oxford Pergamon Press.
- LIGO Scientific Collaboration and Virgo Collaboration: Abbott, B. P. et al., (2016). GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters. 116 (24).
- Moritz H., Hofmann-Wellenhof B. (1993). Geometry, Relativity, Geodesy. Wichmann.
- Schutz B. (2009) A First Course in General Relativity. Cambridge University Press.
- Schutz B., Ricci F. (2001) Gravitational Waves, Sources and Detectors. In: Gravitational Waves edited by Ciufolini, Gorini, Moschella, Fre, Institute of Physics Publ., Bristol & Philadelphia.
- Smart W.M. (1960). Text-Book on Spherical Astronomy. Cambridge Univ. Press.
- Soffel M.H. (1989). Relativity in Astronomy, Celestial Mechanics and Geodesy. Springer Verlag.
- Travagnin M. (2020) Cold atom interferometry for inertial navigation sensors. Publ.Office of EU, Luxembourg.
- Zieliński J.B., Gałązka R.R., Peron R. (2007). On Possible Determination of the Speed of the Gravity Signal in Space With Help of Gradiometry. Artificial Satellites, 42, pp.120-140.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d57eb35-b57c-4f82-9c12-b251b782195d