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ABSTRACT. Discussing the problem of the external gravitational potential of the rotating 
Earth, we have to consider the fundamental postulate of the finite speed of the propagation of 
gravitation. This can be done using the expressions for the gravitational aberration compared to 
the Liénard–Wiechert solution of the retarded potentials. The term gravitational counter-
aberration or co-aberration is introduced to describe the pattern of the propagation of the 
gravitational signal emitted by the rotating Earth. It is proved that in the first approximation, 
the classic theory of the aberration of light can be applied to calculate this effect. Some effects 
of the gravitational aberration on the external gravity field of the rotating Earth may influence 
the orbit determination of the Earth artificial satellites. 
Keywords: propagation of gravitation, speed of gravity, aberration of gravity, retarded 
potential, Earth gravitational potential 

1. INTRODUCTION 
In the excellent book Relativistic Celestial Mechanics of the Solar System (Kopeikin et al., 
2011), we find the notion aberration of gravity, understood as the effect of the Liénard–
Wiechert retarded potential of the moving mass on the propagation of gravity. It is a very 
interesting concept, which could be discussed more closely in the context of the classic 
definitions of the aberration of light and the relativistic gravitational potential. In particular, it 
might be useful to consider this notion for the case of a rotating body with non-homogeneous 
mass distribution like the Earth. Some effects of the finite speed of the gravitational propagation 
on the external gravity field of the rotating Earth have been discussed in Zieliński et al. (2007). 

2. ABERRATION OF LIGHT 
The discovery of the aberration of light is attributed to James Bradley, who presented in 1729 
his observations of changes in the positions of stars to the Royal Society. In his analysis, he 
found that the variation in the apparent position of stars depends on the ratio of the Earth’s 
orbital velocity to the velocity of light. The last one has been determined by Ole C. Rømer a 
half century earlier from the observation of the eclipses of the satellites of Jupiter. Bradley’s 
results constituted an important contribution to the physics of light and to astronomy. As the 
Earth’s orbital speed is about 30 km/s, the ratio is of the order of 10-4. This is referred to as an 
annual aberration; however, a similar effect will appear for other kinds of motion. 
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The classic Newtonian explanation of the aberration of light could be shown using the plane 
defined by vectors 𝑽𝑽 and 𝒍𝒍 representing the motion of the observer and motion of the photon 
from the light source to the observer, respectively. It is tacitly assumed that these vectors are 
defined in the rest-frame – the primary inertial frame in the sense of the Newtonian absolute 
space. In optics, the direction of the incoming light ray is determined by the direction of the 
axis of the telescope – from the center of the object glass to the eyepiece. Because the observer 
is in motion, it will move by some small line segment, while the photon moves through the 
telescope. Therefore, the observer will measure the apparent direction ES’ instead of the true 
one ES’ (see Figure 1). By simple geometric transform, we can prove that the difference: 

 ∆𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃′ = κ sin𝜃𝜃 (1) 

in which: 

 κ = (𝑣𝑣/𝑐𝑐) cosec 1′′ 

 𝑣𝑣  –  speed of the observer, 
 𝑐𝑐  –  speed of light, 
 𝜃𝜃  –  angle between the true direction to the light source and the direction of  
   motion of the observer, and 
 𝜃𝜃′  –  apparent direction to the light source. 

This is the law of aberration according to the classic approach (W.M. Smart, 1960). The 
dimension of (1) is second of arc. 

 
Figure 1. Aberration of light 

This law is applied to the orbital motion of the Earth around the Sun but also to the diurnal 
rotation of the Earth about its axis. In this last case, the speed of the observer depends on the 
speed of rotation and the latitude of the observer’s position: 

 𝑣𝑣𝜑𝜑 = 2𝜋𝜋𝜋𝜋 cos𝜑𝜑
86164

 �𝑘𝑘𝑘𝑘
𝑠𝑠
� (2) 

where: 
 𝑎𝑎  –  mean Earth radius in km, 
 𝜑𝜑  –  latitude of the observer, 
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 86164  –  number of mean solar seconds in a sidereal day. 

The coefficient κ𝑑𝑑 for diurnal aberration is: 

 κ𝑑𝑑 = �0.464
𝑐𝑐
� cos𝜑𝜑 cosec 1′′ = 0′′. 32 cos𝜑𝜑 (3) 

The above expressions are derived considering two different reference frames – the inertial 
frame related to the positions of distant stars and the rotating frame in which the observer with 
his telescope is located. It is assumed that in the inertial frame, the ray of light (or the photon) 
is following a straight line, while in the rotating frame, the path of the photon is represented by 
a curved line. 
The use of the inertial frame requires some comment. This notion is well defined in the 
Newtonian physics; in astrometry, it is defined by directions to distant objects, e.g. quasars. 
However, in modern geodesy, we are using the local inertial frame connected with the Earth 
center of mass. We can follow here the definition by Ashby (Ashby, 2004), who writes: 
“Einstein’s Principle of Equivalence allows one to discuss frames of reference which are freely 
falling in the gravitational fields of external bodies. Sufficiently near the origin of such a freely 
falling frame, the laws of physics are the same as they are in inertial frame; in particular 
electromagnetic waves propagate with uniform speed c in all directions. Such freely falling 
frames are called locally inertial frames. For the GPS, it is very useful to introduce such a frame 
that is non-rotating, with its origin fixed at Earth’s center, and which falls freely along in the 
Earth in the gravitational fields of the other solar system bodies. This is called an Earth Centered 
Inertial (ECI) Frame.” 
The phenomenon of aberration, originated from the relation of velocities of different reference 
frames, could be considered in terms of special relativity. In the textbook (Moritz, Hofmann-
Wellenhof, 1993), we find an elegant interpretation of the light aberration phenomenon in terms 
of special relativity. The authors show that only the application of the Lorentz transformation 
leads to the correct results where the speed of light 𝑐𝑐 is not exceeded. The expression is 
presented: 
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The problem of the aberration of light from the point of view of special relativity is discussed 
also in the books (Brumberg, 1991; Soffel, 1989). It is discussed in greater detail by Kopeikin 
(Kopeikin et al., 2011, p. 152) in the frame of the special relativity setting. He got the 
expression: 
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The first linear term is the classic formula for aberration of light in terms of the Newtonian 
approach, same as expression (1). The other terms are special relativistic corrections, which 
might be important for relativistic geodesy solutions. In the case of the Earth rotation, the ratio 

�𝑣𝑣
𝑐𝑐
�
2
 is of the order 10-11; therefore, the second term should be taken into account if the accuracy 

of measurements will be comparable. 

3. CO-ABERRATION 
Let us consider the reversed situation. We can imagine that the light signal is emitted from the 
position of the observer on Earth and is sent into space. Its path in space in the inertial frame is 
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described as a straight line, but seen from the Earth in the rotating frame, it will describe a 
spiral, called the Archimedean spiral (Grøn, 2009, p. 84), (see Figure 2a and 2b). 

a. b. 

 

 

Figure 2. Archimedean spiral 
a. photon path in the rotating Earth fixed reference frame for 24 h; b. segment for 0.25 s 

Expressions (1)–(3) will be valid, but with the opposite sign. However, these expressions refer 
to the observer located on the surface of the Earth. If we go into space above the Earth onto 
altitudes of Earth satellite orbits, the coefficient κ𝑑𝑑 will change. If we imagine a point in space 
on the altitude of GPS orbits (𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺 = 20200 𝑘𝑘𝑘𝑘), but with fixed coordinates 𝜑𝜑 and 𝜆𝜆, we get: 

 𝑣𝑣𝜑𝜑 = 2𝜋𝜋(𝜋𝜋+𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺) cos𝜑𝜑
86164

�𝑘𝑘𝑘𝑘
𝑠𝑠
� = 1.938 cos𝜑𝜑 (6) 

 κ𝑑𝑑 = �1.938
𝑐𝑐
� cos𝜑𝜑 cosec 1′′ = 1′′. 34 cos𝜑𝜑 (7) 

In the inertial frame, the situation is simpler. Let 𝛼𝛼 and 𝛿𝛿 be spherical coordinates in the inertial 
frame of the direction to which is aimed the light ray emitted from the center of the rotating 
frame. The spherical coordinates of the same direction in the rotating frame are 𝜑𝜑 and 𝜆𝜆. With 
𝑇𝑇 the current rotation time and ω the rotation rate, we have: 

 𝜑𝜑𝑇𝑇 ≡ 𝛿𝛿,      𝛼𝛼𝑇𝑇 ≡ 𝛼𝛼, 

 𝜆𝜆𝑇𝑇 = 𝜆𝜆 + 𝜔𝜔 ∙ ∆𝑇𝑇 (8) 
The distance of the photon racing from the emission point in both frames will be: 

 𝑟𝑟 = 𝑐𝑐 ∙ ∆𝑇𝑇 (9) 

The equations above represent a straight line in the inertial frame but describe the Archimedean 
spiral in the rotating Earth fixed frame. As we talk about the aberration of the incoming light 
ray, let us call the analogue process of the outgoing ray the counter aberration or shortly co-
aberration. 
Now, if we assume that the gravity signal – or graviton – follows the same trajectory as the 
photon, we could talk about the aberration and co-aberration of gravity. Of course, the light 
and gravitation are not the same, but both can be emitted isotropically and have the same speed. 
Therefore, similar expressions could be used for both cases. Is this assumption justified? 
To answer this question, we have to consider some postulates of special and general relativity. 
One fundamental principle of this theory is that nothing travels faster than light. This means 
that changes in the gravitational field cannot be felt everywhere instantaneously: they must 
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propagate. According to the relativity theory, they propagate at exactly the same speed as 
electromagnetic waves in vacuum – the speed of light (Schutz B., F. Ricci, 2001, p.15). Further, 
photons and gravitational signals leaving the same source at the same time will continue to 
travel together through the universe, provided they move through vacuum (Schutz B., 2009, p. 
212). In addition, this postulate has been confirmed experimentally by the observations of the 
gravitational waves (LIGO, 2016). So, the answer to the question above is positive – we can 
compare the propagation of the gravitation with the propagation of the electromagnetic waves. 

4. RETARDED POTENTIAL 
The rotation of the Earth is described with respect to the inertial reference frame. In this frame, 
we have to use the gravitational field of the rotating Earth. But, the well-known expression used 
in geodesy to model the Earth gravitational field: 
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is valid in the Earth-fixed rotating reference frame, with coordinates 𝑟𝑟, 𝜑𝜑, 𝜆𝜆. Here 𝐺𝐺 is the 
gravitational constant, 𝑀𝑀 is the mass of the Earth, 𝑎𝑎 is the equatorial mean radius of the Earth, 
𝐶𝐶𝑛𝑛𝑘𝑘 and 𝑆𝑆𝑘𝑘𝑛𝑛 are the numerical coefficients of the model, 𝑃𝑃𝑛𝑛𝑘𝑘 are the Legendre polynomials of 
degree 𝑛𝑛 and order 𝑘𝑘.  
Such an approximation is justified for low orbits where we can neglect the effect of the 
propagation of the gravitation. However, for higher orbits such as the GNSS, where the distance 
from the Earth surface is of the order of 20,000 km, this effect should be considered.  
The basic equations for the description of the potential field of the moving body is given in 
Landau, Lifshitz (2009) as the Liénard–Wiechert potential. Let us consider the gravity potential 
at the external point 𝑃𝑃, exerted by the point mass 𝑘𝑘 being in motion in the inertial frame. Let  

 𝑹𝑹 = 𝑹𝑹(𝑡𝑡) (11) 

is the vector defining the position of 𝑘𝑘 as a function of time 𝑡𝑡 (see Figure 3). 

 
Figure 3. Retarded potential effect 

The gravity potential at the point 𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is determined by the gravity signal emitted from 𝑘𝑘 
in the moment 𝑡𝑡′ earlier, such that the time interval necessary to travel by the signal from the 
point 𝑹𝑹(𝑡𝑡′) to 𝑃𝑃 be equal to 𝑡𝑡 –  𝑡𝑡′. Let 𝑹𝑹 be the vector between point 𝑃𝑃 and mass 𝑘𝑘, also 
function of time and 𝑅𝑅 = |𝑹𝑹|. Then: 

 𝑡𝑡′ = 𝑡𝑡 − 𝑅𝑅�𝑡𝑡′�
𝑐𝑐

 (12) 
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Then, the potential 𝑉𝑉𝐺𝐺 generated by the mass 𝑘𝑘 at the moment 𝑡𝑡 will be: 

 𝑉𝑉𝐺𝐺(𝑡𝑡) = 𝐺𝐺𝑘𝑘
𝑅𝑅(𝑡𝑡′)

 (13) 

Following Landau, Lifszyc (2009, p. 203, eq. 63.5,a), for the moving mass m, we can write: 

 𝑉𝑉𝐺𝐺(𝑡𝑡) = 𝐺𝐺𝑘𝑘

𝑅𝑅′−𝒗𝒗∙𝑹𝑹�𝑡𝑡
′�

𝑐𝑐

 (14) 

where 𝒗𝒗 is the vector of the speed of motion of 𝑘𝑘, and 𝑅𝑅′ is the distance between 𝑘𝑘 and 𝑃𝑃 at 
the time 𝑡𝑡′. This is called the Liénard–Wiechert potential. 

Looking for an exact solution, we could use the method proposed by Brumberg, Kopeikin 
(1989) or other authors applying the formalism of the general relativity theory. However, for 
practical tasks addressing the measurable effects in the motion of the Earth artificial satellites, 
we may use the approximate solution, taking into account only the speed of the gravity 
propagation. 
Taking the gravity field model (10), we can say that the first and second terms of this expression 
describe the ellipsoid, while all other terms in the series describe anomalies. These anomalies 
extend in space (with the growing 𝑟𝑟 – the distance from the mass center). 

In the Earth Fixed Reference (EFR) frame, the anomalies have constant coordinates 𝜑𝜑, 𝜆𝜆 but 
with extension to space, the 𝑟𝑟 is growing. In the Inertial Earth-centered frame, the coordinate 𝜆𝜆 
is replaced by 𝛼𝛼. The Earth is rotating with the rotation speed 𝜔𝜔 in the current time 𝑇𝑇. If we 
want to calculate the anomalies outside of the Earth, we have to take into account the property 
of the propagation of gravity and the rule of the retarded potential (14). If we assume that gravity 
is propagating analogously to light then for the increment of time 𝛥𝛥𝑇𝑇, the anomaly will be 
propagated along the straight line up in the inertial frame by the distance 𝛥𝛥𝑟𝑟 = 𝑐𝑐 ∙ 𝛥𝛥𝑇𝑇 while the 
Earth will move by the angle 𝛥𝛥𝛼𝛼 = 𝜔𝜔 ∙ 𝛥𝛥𝑡𝑡. It means that in the EFR frame, the anomaly 
propagates not exactly in the radial direction but is inclined by the increment 𝛥𝛥𝜆𝜆 = −𝛥𝛥𝛼𝛼 in the 
direction opposite to the rotation of the Earth or conforming to the motion of the celestial sphere. 

It is interesting to notice that in this approximation, the dependence of 𝛥𝛥𝜆𝜆 from 𝛥𝛥𝑇𝑇 is linear; 
therefore, after integration over a time interval 𝛥𝛥𝑇𝑇 = 𝑇𝑇𝑖𝑖 –𝑇𝑇0, we have: 

 𝜆𝜆(𝑇𝑇) = 𝜆𝜆0 + 𝜔𝜔 ∙ ∆𝑇𝑇 (15) 

that is exactly the same as (8). It shows that in this approximation, the effect of gravitational 
aberration is analogous to the effect of the retarded potential. 

5. EFFECTS ON THE EARTH GRAVITY FIELD MODEL 
This model, currently used in the form (10), is valid for the EFR frame, with polar coordinates 
𝑟𝑟, 𝜑𝜑, 𝜆𝜆. On the other hand, solutions in satellite geodesy calculation of orbits are usually done 
in the Earth-centered inertial frame with coordinates 𝑟𝑟, 𝛿𝛿, 𝛼𝛼. A simple transformation between 
these frames is: 

 𝛼𝛼 + 𝜏𝜏 = 𝜃𝜃𝐺𝐺𝐺𝐺 − 𝜆𝜆 (16) 

where: 
 𝜏𝜏  –  hour angle; 
 𝜃𝜃𝐺𝐺𝐺𝐺  –  the Greenwich sidereal time. 

When the gravity signal, generated by the motion of the non-homogeneous Earth mass, is 
emitted in space at the moment 𝑇𝑇0, it follows the vertical straight line in the inertial frame with 
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the speed of light 𝑐𝑐. The direction of this straight line is defined by the coordinates 𝛿𝛿0, 𝛼𝛼0. After 
the increment of time, at the moment 𝑇𝑇𝑖𝑖, it will reach the distance:  

 𝑅𝑅𝑖𝑖 = 𝑐𝑐 ∙ (𝑇𝑇𝑖𝑖 − 𝑇𝑇0) = 𝑐𝑐 ∙ ∆𝑇𝑇𝑖𝑖 (17) 
At the same time, the Earth will rotate by the angle: 

 ∆𝛼𝛼 = 𝜔𝜔 ∙ ∆𝑇𝑇𝑖𝑖 (18) 

what reflects the gravitational co-aberration, according to (15). 

Therefore, the potential field at the distance 𝑟𝑟𝑖𝑖  will be retarded by 𝛥𝛥𝛼𝛼 with respect to the initial 
orientation of the Earth and the direction of emission 𝛿𝛿0, 𝛼𝛼0. The expression (10), if assuming 
finite propagation speed of gravity according to (17) and substituting (18), should have the 
form: 
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How could this expression be interpreted? The term 𝛥𝛥𝛼𝛼 has small value at distances of the Earth 
satellite orbits. For satellite navigation orbits with altitude ca. 20000 km, the parameter 𝑟𝑟 is 
approximately equal: 

 𝑟𝑟 = 𝑎𝑎 + 𝑅𝑅 (20) 

where 𝑅𝑅 is the distance from the mass point located on the surface of the Earth to the point in 
space. Following (17), we have:  

 𝑟𝑟 = 𝑎𝑎 + 𝑐𝑐 ∙ ∆𝑇𝑇 (21) 

It means that for all terms under the summation sign, we will have in the denominator the value 
𝑐𝑐 raised to the second or higher power. It is conforming to the conclusion of Lorentz that the 
aberration of force acting between two moving particles exists, but it its effect must be of the 
quadratic order 𝑣𝑣

2

 𝑐𝑐2
 (Kopeikin et al., 2011, p. 184). 

It should also be noted that only these terms of expression (19) are relevant in the present 
discussion, which disturb the symmetry of the field with respect to the axis of rotation. It means 
that the terms with the index 𝑘𝑘 =  0 (e.g. 𝐶𝐶20, 𝐶𝐶40, which determine the ellipsoidal flattening 
of the Earth) have no influence on the effect of co-aberration.  

The term 𝛥𝛥𝛼𝛼 is small at distances of the Earth satellite orbits. The order of magnitude is 10-11. 
Does it mean that it is negligible? The accuracy of the time measurement is of the order of 
fraction of a nanosecond. The modern technologies like Inter-Satellite Links (Kur et al., 2020) 
or Cold Atom Interferometry (Travagnin, 2020) open the way to a further increase of the 
precision of positioning. Our results claim that the external Earth gravity field will be slightly 
twisted, provoking small perturbations of some orbits. The most sensitive might be orbits with 
altitudes 20,000 km – 40,000 km; however, it requires further investigation. If such 
perturbations could be observed and measured, two results could be reached: 1) the 
improvement of accuracy in satellite geodesy solutions and 2) independent experimental 
corroboration of the value of the speed of the gravitational interaction.  

6. ADDITIONAL REMARKS 
The problem of the gravitational aberration is discussed in deep by Kopeikin and Fomalont in 
context of the works devoted to the determination of the speed of the gravitational propagation 
(Fomalont, Kopeikin, 2003; Kopeikin, Fomalont, 2006; Kopeikin, Fomalont, 2007). This 
famous experiment allowed for the first time in the history of physics to measure with high 
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reliability the speed of gravity. The authors used the opportunity of the transit of Jupiter in front 
of quasar emitting radio waves. VLBI observations of the radio signals enabled to determine 
the change in quasar position, as the gravitational field of Jupiter bent the incoming radio waves. 
To analyse the data and to compare the results with the theory, a number of effects had to be 
identified, among them, the gravitational aberration effect. In the last of the above papers, we 
find the sentence: The direction of the gravity force propagation changes (aberrates) when one 
goes from one frame to another. The magnitude of the aberration of gravity effects is linear 
with respect to 𝑣𝑣

𝑐𝑐𝑔𝑔
 like the aberration of light is linear with respect to ratio 𝑣𝑣

𝑐𝑐
. The authors used 

the mathematical approach known as the theory of the Liénard–Wiechert potential of the 
moving body, in perfect agreement with the Lorenz transformation of the gravity field variables. 
In the last years, the gravitational waves research provided the further confirmation of the 
identity of the speed of light and the speed of the gravitational waves. The gravity observatories 
LIGO and Virgo observed the gravity event in space – the merger of the pair of the binary black 
holes, at the distance of above 1 billion of light years from the Earth. The gravity signal and the 
light signal were observed on the Earth with the difference less than 1 s (LIGO, 2016). 

7. CONCLUSIONS 
It is shown that we can understand the notion of co-aberration of gravity as an effect produced 
by the diurnal rotation of the Earth and the finite speed of the propagation of gravitation. 
However, the above discussion is limited to aspects interesting from the geodetic point of view. 
The existence of the gravitational co-aberration generated by the mass of the rotating Earth 
should be taken into account in the high-accuracy solutions in satellite geodesy.  

Acknowledgements. This work has been done in the frame of the Agreement of Cooperation 
between the Space Research Centre of the Polish Academy of Sciences and the Central 
(Pulkovo) Astronomical Observatory of the Russian Academy of Science. Assistance in 
computations by Maciej Kalarus is acknowledged. 

REFERENCES 
Ashby N. (2004). The Sagnac effect in the Global Positioning System. in Rizzi, G., Ruggiero, 
M.L.(eds) Relativity in Rotating Frames, series Fundamental Theories of Physics vol.135, 
pp.11-28, Kluwer. 
Brumberg V.A. (1991). Essential Relativistic Celestial Mechanics. Taylor & Francis Group. 
Brumberg V.A., Kopeikin S.M. (1989). Relativistic reference systems and motion of test bodies 
in the vicinity of the Earth. Il Nuovo Cimento, 103B, pp.63-98. 
Fomalont E.B., Kopeikin S.M. (2003). The measurement of the light deflection from Jupiter: 
Experimental results. Astrophysical Journal, 598, pp.704–711. 
Grøn Ø. (2009). Lecture Notes on the General Theory of Relativity. Lecture Notes in Physics. 
772, Springer Science-Business Media. 
Kopeikin S., Efroimsky M., Kaplan G. (2011). Relativistic Celestial Mechanics of the Solar 
System. Wiley VCH. 
Kopeikin, S.M., Fomalont, E.B. (2006). Aberration and the Fundamental Speed of Gravity in 
the Jovian Deflection Experiment. Foundations of Physics, 36, pp.1244–1285. 
Kopeikin, S.M., Fomalont, E.B. (2007). Gravimagnetism, causality, and aberration of gravity 
in the gravitational light-ray deflection experiments. General Relativity and Gravitation, 39, 
pp.1583–1624. 



9 
 

Kur, T., Liwosz, T., Kalarus, M. (2020) The application of inter-satellite links connectivity 
schemes in various satellite navigation systems for orbit and clock corrections determination: 
simulation study. Acta Geod Geophys (2020). https://doi.org/10.1007/s40328-020-00322-4 
Landau L.D., Lifszyc J.M. (2009). Teoria Pola. PWN Warszawa.  
Landau, L.D., Lifshitz, E.M. (1975) The classical theory of fields. Oxford Pergamon Press. 
LIGO Scientific Collaboration and Virgo Collaboration: Abbott, B. P. et al., (2016). 
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole 
Coalescence. Physical Review Letters. 116 (24) 
Moritz H., Hofmann-Wellenhof B. (1993). Geometry, Relativity, Geodesy. Wichmann. 
Schutz B. (2009) A First Course in General Relativity. Cambridge University Press. 
Schutz B., Ricci F. (2001) Gravitational Waves, Sources and Detectors. In: Gravitational 
Waves edited by Ciufolini, Gorini, Moschella, Fre, Institute of Physics Publ., Bristol & 
Philadelphia. 
Smart W.M. (1960). Text-Book on Spherical Astronomy. Cambridge Univ. Press. 
Soffel M.H. (1989). Relativity in Astronomy, Celestial Mechanics and Geodesy. Springer 
Verlag. 
Travagnin M. (2020) Cold atom interferometry for inertial navigation sensors. Publ.Office of 
EU, Luxembourg. 
Zieliński J.B., Gałązka R.R., Peron R. (2007). On Possible Determination of the Speed of the 
Gravity Signal in Space With Help of Gradiometry. Artificial Satellites, 42, pp.120-140. 

Received: 2020-07-28 

Reviewed: 2020-10-09 (undisclosed name) and 2020-11-23 (undisclosed name) 

Accepted: 2021-03-18 


	1. Introduction
	2. ABERRATION OF LIGHT
	3. CO-ABERRATION
	4. RETARDED POTENTIAL
	5. EFFECTS ON THE EARTH GRAVITY FIELD MODEL
	6. ADDITIONAL REMARKS
	7. CONCLUSIONS
	References

