PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental studies on the relationship between HDOP and position error in the GPS system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2D position error in the Global Positioning System GPS depends on the horizontal dilution of precision (HDOP) and User Equivalent Range Error UERE. The non-dimensional HDOP coeffcient, determining the influence of satellite distribution on the positioning accuracy, can be calculated exactly for a given moment in time. However, the UERE value is a magnitude variable in time, especially due to errors in radio propagation (ionosphere and troposphere effects) and it cannot be precisely predicted. The variability of the UERE causes the actual measurements (despite an exact theoretical mathematical correlation between the HDOP value and the position error) to indicate that position errors differ for the same HDOP value. The aim of this article is to determine the relation between the GPS position error and the HDOP value. It is possible only statistically, based on an analysis of an exceptionally large measurement sample. To this end, measurement results of a 10-day GPS measurement campaign (900,000 fixes) have been used. For HDOP values (in the range of 0.6-1.8), position errors were recorded and analysed to determine the statistical distribution of GPS position errors corresponding to various HDOP values. The experimental study and statistical analyses showed that the most common HDOP values in the GPS system are magnitudes of: 0.7 (𝑝 = 0.353) and 0.8 (𝑝 = 0.432). Only 2.77% of fixes indicated an HDOP value larger than 1. Moreover, 95% of measurements featured a geometric coeffcient of 0.973 - this is why it can be assumed that in optimal conditions (without local terrain obstacles), the GPS system is capable of providing values of HDOP ≤ 1, with a probability greater than 95% (2𝜎). Obtaining a low HDOP value, which results in a low GPS position error value, calls for providing a high mean number of satellites (12 or more) and low variability in their numer.
Rocznik
Strony
17--36
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Transport and Logistics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
Bibliografia
  • [1] Krasuski, K., Ciećko, A., Bakuła, M., & Wierzbicki, D. (2020). New Strategy for Improving the Accuracy of Aircraft Positioning Based on GPS SPP Solution. Sensors, 20(17), 4921. https://doi.org/10.3390/s20174921
  • [2] Lachapelle, G., Cannon, M. E., Qiu, W., & Varner, C. (1996). Precise Aircraft Single-point Positioning Using GPS Post-mission Orbits and Satellite Clock Corrections. Journal of Geodesy, 70(9), 562-571. https://doi.org/10.1007/bf00867864
  • [3] Ochieng, W. Y., Saner, K., Walsh, D., Brodin, G., Griffin, S., & Denney, M. (2003). GPS Integrity and Potential Impact on Aviation Safety. The Journal of Navigation, 56(1), 51-65. https://doi.org/10.1017/S0373463302002096
  • [4] Elhajj, M., & Ochieng, W. (2020). Impact of New GPS Signals on Positioning Accuracy for Urban Bus Operations. The Journal of Navigation, 73(6), 1284-1305. https://doi.org/10.1017/S0373463320000272
  • [5] Naranjo, J. E., Jiménez, F., Aparicio. F., & Zato, J. (2009). GPS and Inertial Systems for High Precision Positioning on Motorways. The Journal of Navigation, 62(2), 351-363. https://doi.org/10.1017/S0373463308005249
  • [6] Sun, Q. C., Odolinski, R., Xia, J. C., Foster, J., Falkmer, T., & Lee, H. (2017). Validating the Efficacy of GPS Tracking Vehicle Movement for Driving Behaviour Assessment. Travel Behaviour and Society, 6, 32-43. https://doi.org/10.1016/j.tbs.2016.05.001
  • [7] Bhatti, J., & Humphreys, T. E. (2017). Hostile Control of Ships via False GPS Signals: Demonstration and Detection. NAVIGATION, Journal of the Institute of Navigation, 64(1), 51-66. https://doi.org/10.1002/navi.183
  • [8] Glomsvoll, O., & Bonenberg, L. K. (2017). GNSS Jamming Resilience for Close to Shore Navigation in the Northern Sea. The Journal of Navigation, 70(1), 33-48. https://doi.org/10.1017/S0373463316000473
  • [9] Han, J., Park, J., Kim, J., & Son, N.-S. (2016). GPS-less Coastal Navigation Using Marine Radar for USV Operation. IFAC-PapersOnLine, 49(23), 598-603. https://doi.org/10.1016/j.ifacol.2016.10.500
  • [10] Gao, Z., Ge, M., Li, Y., Shen, W., Zhang, H., & Schuh, H. (2018). Railway Irregularity Measuring Using Rauch-Tung-Striebel Smoothed Multi-sensors Fusion System: Quad-GNSS PPP, IMU, Odometer, and Track Gauge. GPS Solutions, 22(2), 36. https://doi.org/10.1007/s10291-018-0702-5
  • [11] Specht, C., Koc, W., Chrostowski, P., & Szmagliński, J. (2019). Accuracy Assessment of Mobile Satellite Measurements in Relation to the Geometrical Layout of Rail Tracks. Metrology and Measurement Systems, 26(2), 309-321. https://doi.org/10.24425/mms.2019.128359
  • [12] Kizil, U., & Tisor, L. (2011). Evaluation of RTK-GPS and Total Station for Applications in Land Surveying. Journal of Earth System Science, 120, 215-221. https://doi.org/10.1007/s12040-011-0044-y
  • [13] Liu, C., Gao, J. X., Yu, X. X., Zhang, J. X., & Zhang, A. B. (2015). Mine Surface Deformation Monitoring Using Modified GPS RTK with Surveying Rod: Initial Results. Survey Review, 47(341). 79-86. https://doi.org/10.1179/1752270614Y.000000092
  • [14] Contreras-de-Villar, F., García, F. J., Muñoz-Perez, J. J., Contreras-de-Villar, A., Ruiz-Ortiz, V., Lopez, P., Garcia-López, S., & Jigena, B. (2021). Beach Leveling Using a Remotely Piloted Aircraft System (RPAS): Problems and Solutions. Journal of Marine Science and Engineering, 9(1), 19. https://doi.org/10.3390/jmse9010019
  • [15] Stateczny, A., Gronska-Sledz, D., & Motyl, W. (2019). Precise Bathymetry as a Step Towards Producing Bathymetric Electronic Navigational Charts for Comparative (Terrain Reference) Navigation. The Journal of Navigation, 72(6), 1623-1632. https://doi.org/10.1017/S0373463319000377
  • [16] Lewandowski, W., & Thomas, C. (1991). GPS Time Transfer. Proceedings of the IEEE, 79(7), 991-1000. https://doi.org/10.1109/5.84976
  • [17] Lombardi, M. A., Nelson, L. M., Novick, A. N., & Zhang. V. S. (2001). Time and Frequency Measurements Using the Global Positioning System (GPS). CAL LAB: The International Journal of Metrology, 8, 26-33. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=105004
  • [18] Lee, Y.-S., Park. J.-H., & Kim, S.-K. (2009). Applying Embedded System Forensics to Car GPS Navigation System Analysis. The Journal of Advanced Navigation Technology, 13(5), 639-645. https://www.koreascience.or.kr/article/JAKO200919663061368.page
  • [19] Uradziński, M., Rapiński, J., Tomaszewski, D., Śmieja, M., Guo, H., Yu, S., & Jian, X. (2017). Assessment of Usefulness of the MEMS-based Integrated Navigation Unit in Car Navigation. Technical Sciences, 20(4), 321-331. https://doi.org/10.31648/ts.5430
  • [20] Li, G., & Geng, J. (2019). Characteristics of Raw Multi-GNSS Measurement Error from Google Android Smart Devices. GPS Solutions, 25(3), 90. https://doi.org/10.1007/s10291-019-0885-4
  • [21] Paziewski, J. (2020). Recent Advances and Perspectives for Positioning and Applications with Smartphone GNSS Observations. Measurement Science and Technology, 31(9), 091001. https://doi.org/10.1088/1361-6501/ab8a7d
  • [22] U.S. DoD. (1993). Global Positioning System Standard Positioning Service Signal Specification. U.S. DoD. https://www.gps.gov/technical/ps/1993-SPS-signal-specification.pdf
  • [23] U.S. DoD. (2001). Global Positioning System Standard Positioning Service Performance Standard. U.S. DoD. https://www.navcen.uscg.gov/pdf/gps/geninfo/2001SPSPerformanceStandardFINAL.pdf
  • [24] U.S. DoD. (2008). Global Positioning System Standard Positioning Service Performance Standard. U.S. DoD. https://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf
  • [25] FAA William J. Hughes Technical Center (2020). Global Positioning System (GPS) Standard Positioning Service (SPS) Performance Analysis Report. FAA William J. Hughes Technical Center. https://www.nstb.tc.faa.gov/reports/2020_Q3_SPS_PAN111_v1.0.pdf
  • [26] Renfro, B. A., Stein, M., Boeker, N., & Terry, A. (2018). An Analysis of Global Positioning System (GPS) Standard Positioning Service (SPS) Performance for 2017. SGL. https://www.gps.gov/systems/gps/performance/2017-GPS-SPS-performance-analysis.pdf
  • [27] Akgul, V., Gurbuz, G., Kutoglu, S. H., & Jin, S. (2020). Effects of the High-order Ionospheric Delay on GPS-based Tropospheric Parameter Estimations in Turkey. Remote Sensing, 12(21), 3569. https://doi.org/10.3390/rs12213569
  • [28] Liu, Z., Li, Y., Guo, J., & Li, F. (2016). Influence of Higher-order Ionospheric Delay Correction on GPS Precise Orbit Determination and Precise Positioning. Geodesy and Geodynamics, 7(5), 369-376. https://doi.org/10.1016/j.geog.2016.06.005
  • [29] Renga, A., Causa, F., Tancredi, U., & Grassi, M. (2018). Accurate Ionospheric Delay Model for Real-time GPS-based Positioning of LEO Satellites Using Horizontal VTEC Gradient Estimation. GPS Solutions, 22(2), 46. https://doi.org/10.1007/s10291-018-0710-5
  • [30] Mendez Astudillo, J., Lau, L., Tang, Y.-T., & Moore, T. (2018). Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors, 18(2), 580. https://doi.org/10.3390/s18020580
  • [31] Pan, L., & Guo, F. (2018). Real-time Tropospheric Delay Retrieval with GPS, GLONASS, Galileo and BDS Data. Scientific Reports, 12, 17067. https://doi.org/10.1038/s41598-018-35155-3
  • [32] Byun, S. H., Hajj, G. A., & Young, L. E. (2002). Development and Application of GPS Signal Multipath Simulator. Radio Science, 37(6), 10-1-10-23. https://doi.org/10.1029/2001RS002549
  • [33] Han, K., Tang, C., & Deng, Z. (2019). A New Method for Multipath Filtering in GPS Static High-precision Positioning. Sensors, 19(12), 2704. https://doi.org/10.3390/s19122704
  • [34] Heng, L., Gao, G. X., Walter, T., & Enge, P. (2010). GPS Ephemeris Error Screening and Results for 2006-2009. Proceedings of the 2010 International Technical Meeting of the Institute of Navigation (ION ITM 2010), USA, 1014-1022. https://www.ion.org/publications/abstract.cfm?articlelD=8881
  • [35] Montenbruck, O., Steigenberger, P., & Aicher, M. (2021). A Long-term Broadcast Ephemeris Model for Extended Operation of GNSS Satellites. Navigation, Journal of the Institute of Navigation, 68(1), 199-215. https://doi.org/10.1002/navi.404
  • [36] Langley, R. B. (1999). Dilution of Precision. GPS World, 5, 52-59. http://www2.unb.ca/gge/Resources/gpsworld.may99.pdf
  • [37] Santerre, R., Geiger, A., & Banville, S. (2017). Geometry of GPS Dilution of Precision: Revisited. GPS Solutions, 21(4), 1747-1763. https://doi.org/10.1007/s10291-017-0649-y
  • [38] Ma. G., Gao. W., Li, J., Chen, Y., & Shen, H. (2014). Estimation of GPS Instrumental Biases from Small Scale Network. Advances in Space Research, 54(5), 871-882. https://doi.org/10.1016/j.asr.2013.01.008
  • [39] Zhilinskiy, V., Gagarina, L., Ishkova, T., Petrov, E., & Petrova, A. (2019). Software Package for Solving Navigation Problem Using Systematic Instrumental Error Correction. Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus 2019), Russia, 1871-1875. https://doi.org/10.1109/EIConRus.2019.8657157
  • [40] Specht, C. (2007). GPS System. Publishing House of the Bernardinum. https://www.researchgate.net/profile/Cezary-Specht/publication/260006261_System-GPS/links/0deec52fa70440f4000000/System-GPS.pdf (in Polish)
  • [41] Barros, M. S. S., Rosa, L. C. L., Walter, P., & Aives, L. H. P. M. (1999). Global Positioning System: A Methodology for Modelling the Pseudorange Measurements. Advances in Space Research, 23(8), 1529-15232. https://doi.org/10.1016/s0273-1177(99)00308-7
  • [42] Barros, M. S. S., Rosa, L. C. L., Walter, F.,& Méndez, D. (2001). GPS: Statistical Models to Reproduce the Pseudoranges in Dilferent Scenarios and their Reliability Evaluation. Advances in Space Research. 28(1), 227-232. https://doi.org/10.1016/S0273-1177(01)00348-9
  • [43] Koyama, Y.,& Tanaka, T. (2010). Improvements in Accurate GPS Positioning Using Time Series Analysis. Proceedings of the SICE Annual Conference 2010 (SICE 2010), Taiwan, 282-285. https://doi.org/10.9746/jcmsi.4.283
  • [44] Belabbas, B., Hornbostel, A., & Sadeque, M. Z. (2005). Error Analysis of Single Frequency GPS Measurements and Impact on Timing and Positioning Accuracy. Proceedings of the 2nd Workshop on Positioning, Navigation and Communication 2005 (WPNC 2005) and 1st Ultra-wideband Expert Talk 2005 (UET 2005), Germany, 81-86. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.519.1622&rep=rep1&type=pdf
  • [45] Belabbas, B., Petitprez, F., & Hornbostel, A. (2005). UERE Analysis for Static Single Frequency Positioning Using Data of IGS Stations. Proceedings of the 2005 National Technical Meeting of the Institute of Navigation (ION NTM 2005), USA, 310-319. https://www.ion.org/publications/abstract.cfm?articlelD=5998
  • [46] Federici, B., Giacomelli, D., Sguerso, D., Vitti, A., & Zatelli, P. (2013). A Web Processing Service tor GNSS Realistic Planning. Applied Geomatics, 5(1). 45-57. https://doi.org/10.1007/s12518-011-0058-9
  • [47] Gandolfi, S., & La Via, L. (2011). SKYPLOT_DEM: A Tool for GNSS Planning and Simulations. Applied Geomatics, 3(1), 35-48. https://doi.org/10.1007/s12518-011-0045-1
  • [48] Nowak. A. (2017). Dynamic GNSS Mission Planning Using DTM for Precise Navigation of Autonomous Vehicles. The Journal of Navigation, 70(3). 483-504. https://doi.org/10.1017/S0373463316000679
  • [49] Specht, M., Specht, C., Dąbrowski, P., Czapiewski, K., Smolarek, L., & Lewicka, O. (2020). Road Tests of the Positioning Accuracy of INS/GNSS Systems Based on MEMS Technology for Navigating Railway Vehicles. Energies, 13(17), 4463. https://doi.org/10.3390/en13174463
  • [50] Spilker Jr., J. J., Axelrad, P., Parkinson, B. W., & Enge, P. (1996). Global Positioning System: Theory and Applications. AIAA. https://arc.aiaa.org/doi/book/10.2514/4.866388
  • [51] Teunissen, P. J. G., & Odijk, D. (1997). Ambiguity Dilution of Precision: Definition. Properties and Application. Proceedings of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997), USA, 891-899. https://www.ion.org/publications/abstract.cfm?articleID=2811
  • [52] Odijk, D., & Teunissen, P. J. G. (2008). ADOP in Closed Form for a Hierarchy of Multi-frequency Single-baseline GNSS Models. Journal of Geodesy, 82, 473-492. https://doi.org/10.1007/s00190-007-0197-2
  • [53] Wang, K., Teunissen, P. J. G., & El-Mowafy, A. (2020). The ADOP and PDOP: Two Complementary Diagnostics for GNSS Positioning. Journal of Surveying Engineering, 146(2), 04020008. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000313
  • [54] Specht, M. (2020). A Statistical Distribution Analysis of Navigation Positioning System Errors - Issue of the Empirical Sample Size. Sensors, 20(24), 7144. https://doi.org/10.3390/s20247144
  • [55] Specht, M. (2021). Consistency Analysis of Global Positioning System Position Errors with Typical Statistical Distributions. The Journal of Navigation, 74(6), 1201-1218. https://doi.org/10.1017/S0373463321000485
  • [56] Specht, M. (2021). Consistency of the Empirical Distributions of Navigation Positioning System Errors with Theoretical Distributions - Comparative Analysis of the DGPS and EGNOS Systems in the Years 2006 and 2014. Sensors, 21(1), 31. https://doi.org/10.3390/s21010031
  • [57] Specht, M. (2021). Determination of Navigation System Positioning Accuracy Using the Reliability Method Based on Real Measurements. Remote Sensing, 13(21), 4424. https://doi.org/10.3390/rs13214424
  • [58] Yin, M.-L., & Arellano, R. (2012). A Risk Analysis Framework on GPS User Range Accuracy. Proceedings of the 2012 Annual Symposium on Reliability and Maintainability (RAMS 2012), USA, 1-6. https://doi.org/10.1109/RAMS.2012.6175502
  • [59] NAVCEN (2011). Interface Specification IS-GPS-200F. NAVCEN. https://www.navcen.uscg.gov/pdf/IS-GPS-200F.pdf
  • [60] Heng, L., Gao, G. X., Walter, T., & Enge, P. (2011). Statistical Characterization of GPS Signal-In-Space Errors. Proceedings of the 2011 International Technical Meeting of the Institute of Navigation (ION GNSS 2011), USA, 312-319. https://www.ion.org/pubIications/abstract.cfm?articleID=9472
  • [61] Specht, C., Mania, M., Skóra, M., & Specht, M. (2015). Accuracy of the GPS Positioning System in the Context of Increasing the Number of Satellites in the Constellation. Polish Maritime Research, 22(2), 9-14. https://doi.org/10.1515/pomr-2015-0012
  • [62] Grewal, M. S., Weill, L. R., & Andrews A. P. (2007). Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc. https://www.wiley.com/en-us/GlobaI+Positioning+Systems%2C+Inertial+Navigation%2C+and+Integration%2C+2nd+Edition-p-9780470099711
  • [63] Deakin, R. E., Hunter, M. N., & Karney, C. F. F. (2010). The Gauss-Kruger Projection. Proceedings of the 23rd Victorian Regional Survey Conference, Australia, 1-20. https://www.academia.edu/27744389/THE_GAUSS_KR%C3%9CGER_PROJECTON
  • [64] Norman, L. J., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions. John Wiley & Sons, Inc. https://www.wiley.com/en-us/Continuous+Univariate+Distributions%2C+Volume+1%2C+2nd+Edition-p-9780471584957
Uwagi
1. This research was funded from the statutory activities of Gdynia Maritime University, grant number WN/2021/PZ/05.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d56869a-feb5-4561-9c28-3d43af4cc643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.