PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of oxidation of manganese by potassium permanganate and chloride in the Velekinca water treatment plant, Kosovo

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our scientific research is based on oxidation reactions and monitoring of chemical reaction kinetics in the Velekinca groundwaters plant in Gjilan municipality, Kosovo. The GW of this plant contains high concentration of manganese so we need to use potassium permanganate (KMnO4) as one of the most power oxidants in the water treatment plant. In our research the high concentration of Mn in groundwaters is 0.22–0.28 mg∙dm–3 and this concentration is not in accordance with the WHO. Chlorine is one of the most common disinfectants used in the water treatment industry because it has a low cost and immediate effect on the destruction of microorganisms, the concentration of chlorine (Cl2) in our research is 0.1–0.32 mg∙dm–3. The speed of chemical reactions in the technology of GW is extremely important because sometimes in the elimination of chemical pollutants using oxidizing agents often form intermediate species. The speed of reactions indicates how fast chemical bonds are formed in the creation of a product, and this depends on the rate of reaction (XA). The focus for the research is to study the potassium permanganate and chlorine gas reactions in water if it forms intermediate products (intermediate species) due to the high speed of reactions. Scientific research conclusion, intermediate species in the oxidation reactions of Mn and water disinfection with Cl2(g) it is impossible to cause a high rate of chemical reactions from the reaction rate (XA = 1%) to the reaction rate (XA = 99%). The maximum speed at the highest XA Cl2 is from 4.405∙10–11 to 8.87∙10–10 mol∙dm–3∙s–1, while at Mn is (2.030–4.034)∙10–7 mol∙dm–3∙s–1.
Wydawca
Rocznik
Tom
Strony
30--37
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
  • University of Mitrovica “Isa Boletini”, Faculty of Food Technology, Department of Technology, Str. Ukshin Kovacica, 40000 Mitrovica, Republic of Kosovo
  • University of Tirana, Faculty of Nature Sciences, Department of Industrial Chemistry, Str. Boulevard Zogu I, 1001 Tirana, Albania
Bibliografia
  • ATKINS P., OVERTON T., ROURKE J., WELLER M., ARMSTRONG F. 2006. Inorganic chemistry. 4th ed. Oxford. Oxford University Press. ISBN 0199264635 pp. 848.
  • BEKKOUCH M.F., ZANAGUI A. 2018. Quality of Hamadian groundwater table of the continental tertiary of Wadi Mehiya in Tindouf province (South-West of Algeria). Journal of Water and Land Development. No. 39 p. 3–9. DOI 10.2478/jwld-2018-0053.
  • BELULI V.M. 2018a. Influence of urbanization and industries on the pollution of rivers of Gjilan Municipality, Kosovo. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske Kem. Vol. 67. Iss. 11–12 p. 517−525. DOI 10.15255/KUI.2018.007.
  • BELULI V. 2018b. Oxidation of manganese with active use of potassium permanganate in the water treatment plants in the Town of Gjilan, Republic of Kosovo. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Vol. 9. Iss. 1 p. 260–266. DOI 10.29048/makufebed.474307.
  • BELULI V.M. 2019. Aassessment of groundwaters’ quality with depth of (8–60) m in the Arbëria neighbourhood of Gjilan municipality, Kosovo. Journal of the Turkish Chemical So-ciety Section A: Chemistry. Vol 6. Iss. 3 p. 419–28. DOI 10.18596/jotcsa.493909.
  • BELULI V., MULLIQI I. 2019. Concentration of heavy metals in Mirusha and Stanishor Rivers of Gjilan municipality and their impact on pollution of the Morava River, Kosovo. Journal of the Turkish Chemical Society Section A: Chemistry. Vol. 6. Iss. 2 p. 89–96. DOI 10.18596/jotcsa.489098.
  • BUAMAH R., PETRUSEVSKI B., RIDDER D., VAN DE WETERING T., SHIPPERS J.C. 2009. Manganese removal in groundwater treatment: Practice, problems and probable solutions. Water Science and Technology – Water Supply (WSTWS). Vol. 9. Iss. 1 p. 89–98. DOI 10.2166/ws.2009.009.
  • DINKA M.O. 2019. Groundwater property and composition variability under long-term irrigated area of Wonji Plain, Ethiopia. Journal of Water and Land Development. No. 41 (IV–VI) p. 37–46. DOI 10.2478/jwld-2019-0025.
  • FUCHIGAMI T., TAKEDA M., TERASHIMA K. 2010. Effect of advanced water treatment on behaviour of residual chlorine and development of chlorine control method in distribution systems. Water science and Technology – Water Supply (WSTWS). Vol. 10. Iss. 5 p. 700–709. DOI 10.2166/ws. 2010.409.
  • GAO ZH., NGUANG S.K., KONG D.X. 2019. Advances in modelling, monitoring, and control for complex industrial systems, Complexity. Vol. 2019. Art. ID 2975083. DOI 10.1155/ 2019/2975083.
  • GRAHAM R.D., QUIRK J.P., GRAHAM R.D., HANNAM R.J., UREN N.C. 1988. Manganese in soils and plants. Springer – Netherlands. ISBN 978-94-009-2817-6 pp 87.
  • GUO Y., ZHANG J., CHEN X., YANG J., HUANG J., HUANG T. 2019. Kinetics and mechanism of Mn2+ removal from groundwater using iron–manganese co-oxide filter film. Water Supply. Vol. 19. Iss. 6 p. 1711–1717. DOI 10.2166/ws. 2019.045.
  • Hach 1999. DR/2010 Spectrophotometer instrument manual. Rev. 5. Loveland, Colorado. Hach Comp. pp. 103.
  • HAKAMI M.W., ALKHUDHIRI A., ZACHAROF M.P., HILAL N. 2019. Towards a sustainable water supply: Humic acid removal employing coagulation and tangential cross flow microfiltration. Water. Vol. 11. Iss. 10 p. 1–18. DOI 10.3390/ w11102093.
  • MAEDA S., OHNO K., MOROKUMA K. 2013. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Physical Chemistry Chemical Physics. Vol. 15 p. 3683–3701. DOI 10.1039/c3cp44063j.
  • MALOLLARI I., PINGULI L. 2014. Inxhinieria e reaksioneve kimike [Chemical reaction engineering]. Tiranë. Boutar. ISBN 978-9928-173-13-3 pp. 218.
  • PINGULI L., MALOLLARI I., MANAJ H. 2017. Kontrolli dhe rregullimi i proceseve të industrisë kimike [Control and regulation of chemical industry processes]. Tiranë. ONFURI. ISBN 978-9928-164-28-5 pp. 289.
  • RAVEENDRAN R., CHATELIER B., WILLIAMS K. 2002. Oxidation of manganese in drinking water systems using potassium permanganate. Water Science and Technology – Water Supply (WSTWS). Vol. 2. Iss. 5–6 p. 173–178. DOI 10.2166/ws. 2002.0166.
  • REGEANE M., FREITAS R.M., PERILLI TH.A.G., LADEIRA A.C.Q. 2013. Oxidative precipitation of manganese from acid mine drainage by potassium permanganate. Journal of Chemistry. Art. ID 287257 p. 1–8. DOI 10.1155/2013/287257.
  • SHODHAN K., WEI I. 2010. Effects of mixing on chloramination process. Water Science and Technology – Water Supply (WSTWS). Vol. 10. Iss. 4 p. 629–637. DOI 10.2166/ws. 2010.170.
  • SORLINI S., BIASIBETTI M., GIALDINI F., COLLIVIGNARELLI M.C. 2015. How can drinking water treatments influence chlorine dioxide consumption and by-product formation in final disinfection? Water Science and Technology – Water Supply (WSTWS). Vol. 16. Iss. 2 p. 333–346. DOI 10.2166/ws. 2015.142.
  • TOBIASON J.E., BAZILIO A., GOODWILL J., MAI X., NGUYEN C. 2016. Manganese removal from drinking water sources. Water Pollution. Vol. 2 p. 168–177. DOI 10.1007/s40726-016-0036-2.
  • WORM G.I.M., KELDERMAN J.P., LAPIKAS T., VAN DER HELM A.W.C., VAN SCHAGEN K.M., RIETVELD L. C. 2013. The use of process simulation models in virtual commissioning of process automation software in drinking water treatment plants. Water Science and Technology – Water Supply (WSTWS). Vol. 13. Iss. 5 p. 1331–1339. DOI 10.2166/ws. 2013.131.
  • ZHANG Q., ZHANG SH., LYU C., YANG X., LIU W., SU X. 2017. A cost-effective catalytically adsorbent for in situ remediation of manganese contaminated groundwater. Water Science and Technology – Water Supply (WSTWS). Vol. 18. Iss. 2 p. 504–514. DOI 10.2166/ws.2017.104.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d55b61a-b5ed-4f23-b90e-9b772330bdd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.