
DOI 10.2478/ama-2021-0023 acta mechanica et automatica, vol.15 no.3 (2021)

177

HAND GUIDING A VIRTUAL ROBOT USING A FORCE SENSOR

Radovan GREGOR* , Andrej BABINEC* ,František DUCHOŇ* ,Michal DOBIŠ*

*Faculty of Electrical Engineering and Information Technology, Institute of Robotics and Cybernetics,
Slovak University of Technology (STU) in Bratislava, Ilkovičova 3, SK-812 19, Bratislava, Slovakia

radkog@gmail.com; andrej.babinec@stuba.sk; frantisek.duchon@stuba.sk; michal.dobis@stuba.sk

received 14 April 2021, revised 18 July 2021, accepted 20 July 2021

Abstract: The research behind this paper arose out of a need to use an open-source system that enables hand guiding of the robot
effector using a force sensor. The paper deals with some existing solutions, including the solution based on the open-source framework
Robot Operating System (ROS), in which the built-in motion planner MoveIt is used. The proposed concept of a hand-guiding system
utilizes the output of the force–torque sensor mounted at the robot effector to obtain the desired motion, which is thereafter used
for planning consequential motion trajectories. Some advantages and disadvantages of the built-in planner are discussed, and then
the custom motion planning solution is proposed to overcome the identified drawbacks. Our planning algorithm uses polynomial
interpolation and is suitable for continuous replanning of the consequential motion trajectories, which is necessary because the output
from the sensor changes due to the hand action during robot motion. The resulting system is verified using a virtual robot in the ROS
environment, which acts on the real Optoforce force–torque sensor HEX-70-CE-2000N. Furthermore, the workspace and the motion
of the robot are restricted to a greater extent to achieve more realistic simulation.

Keywords: hand guidance, force–torque sensor, motion planning, industrial robot, Robot Operating System

1. INTRODUCTION

According to the International Federation for Robotics (IFR;
https://ifr.org/free-downloads/, 2020), in 2018, >400,000 new
industrial robots were installed in the manufacturing sector. The
annual increase in this parameter was 6%, which—at the end of
2018—increased the "population" of industrial robots to 2,439,543
pieces. The dominant segments are the automotive, electronics,
metalworking, plastics, and food industries. Such growth is also
due to new technologies that make it easier to work with robots for
nonprofessional users. One of these technologies is power–torque
control, which allows robots to provide “touch” and enables users
to work with the robot at the level of manual guidance. This tech-
nology makes it possible to create robotic applications more effi-
ciently and in a significantly accelerated manner.

The following standards apply in particular to industrial robots'
work in cooperation with humans:
a) International Organization for Standardization (ISO) 10218 – 1

Robots and robotic devices - Safety requirements for industrial
robots. Part 1 Robots.

b) ISO 10218 – 2 Robots and robotic devices - Safety require-
ments for industrial robots. Part 2 Robot systems and integra-
tion and technical standard.

c) ISO technical standard (TS) 15066 – Robots and robotic
devices - Collaborative robots.
The first standard describes the requirements and guidelines

for safe design, protective measures, and information for industrial
robot usage. It describes the basic risks associated with robots
and describes the elimination or adequate reduction of risks. The
second standard deals mainly with the integration and installation
of industrial robots into cells or production lines. This standard is a
continuation of the first one; it is much more detailed, and it speci-

fies the requirements for individual elements of the robotic system.
The technical standard TS 15066 describes the safety require-
ments for the integration of collaborative robotic applications.
Collaborative robotic systems differ from standard industrial ones
in that the operator may work close to the robotic system. Simul-
taneously, the robot does not limit its activities in any way and can
thus come into physical contact with the human operator.

Human–robot collaboration can have the following four
modes:

 Safety-rated monitored stop;

 Hand guiding;

 Speed and separation monitoring; and

 Power and force limiting.
This paper focuses on the area of hand guiding of robots. Our

research is unique in that it provides an open-source solution
based on a relatively inexpensive force–torque (FT) sensor. The
goal of our research is to point out the possibilities of using low-
cost reusable solutions when hand guiding the robot effector,
which is a better solution than using a teach pendant in the pro-
cess of teaching robotic paths. An example of such use can be
tracking of an uneven path with many via points when using a
teach pendant, which could be more time-consuming. In this
research, we have also focused on the fluency and safety of the
robot’s motion during the hand-guiding process so that it is more
ergonomic for an operator. The algorithms were tested on the
virtual robot model KUKA KR16. It is an industrial robot that is not
intended for use outside a cage, but during the teaching process,
its maximum speed is limited to the safe value; thus, hand guiding
is allowed.

The paper is organized as follows. Section 2 demonstrates the
current state of the art and defines the uniqueness of our solution.
Section 3 describes the hardware and software components used

https://orcid.org/0000-0002-9498-6768
https://orcid.org/0000-0001-5550-2583
https://orcid.org/0000-0003-4140-9737
https://orcid.org/0000-0002-2453-212X
mailto:michal.dobis@stuba.sk
https://ifr.org/free-downloads/

Radovan Gregor, Andrej Babinec, František Duchoň, Michal Dobiš DOI 10.2478/ama-2021-0023
Hand Guiding a Virtual Robot Using a Force Sensor

178

in this work and the methodology. Section 4 shows how the data
from the FT sensor were processed. Sections 5 and 6 show the
visualization of the whole process and the configuration of the
solution, respectively. Section 7 describes the implementation of
our solution since the existing path planning system is unsuitable
for our purpose. Section 8 presents the results of the experiments
and the verification of the whole solution.

2. RELATED WORKS

According to Matheson et al. (2019), in the field of human–
robot collaboration (HRC), robots with technologies corresponding
to power- and force-limiting operating modes are primarily used,
but the number of applications of standard industrial robots using
hand-guiding and speed-monitoring modes is also increasing.
Manual guidance is a representative functionality of cooperative
robots, which allows unqualified users to interact with and pro-
gram robots more intuitively than while using a teach pendant
(Safeea at al., 2017). Such functionality is made possible mainly
by sensing the forces and torques.

Loske and Biesenbach (2014) describe a typical implementa-
tion of an FT sensor integrated for hand guiding into an industrial
robot's control. The article includes a SI-130-10 sensor integrated
with a KR 16-2 robot. Functional applications, such as hand guid-
ing, hand-guiding motion learning, and sensor-guided motion,
have been demonstrated. The results show the need to configure
such a sensor, especially with reference to gravity. The article
also demonstrates the much higher efficiency of the robot's learn-
ing for the required movements and points in space.

Reyes-Uquillas and Hsiao (2021) analyze manual guidance
control using an FT sensor. They propose an adaptive admittance
law that can adjust the parameters of the FT sensor to modify
robot compliance in critical areas of the workspace, such as near
and on-configuration singularities, joint limits, and workspace
limits, for a smooth and safe operation. This demonstrates the
further usefulness of FT sensors in manual guidance and ad-
vanced control methods.

In another paper (Safeea et al., 2019), the authors deal with a
robot's precise manual guidance at the level of the end effector
when navigating around obstacles. An FT sensor is used to man-
ually guide the robot, while the compliant robot's body is used to
detect contact with an obstacle. Thus, the solution proves the
possibility of using the FT sensor for manual guidance even with
more-expensive compliant robots, such as the KUKA iiwa. Anoth-
er method of precise manual guidance with an expensive compli-
ant robot is demonstrated by Safeea et al. (2017). In this case, FT
sensing is used directly from the joints of the robot itself.

Massa et al. (2015) analyze the various possibilities of manual
robot guidance. For example, various admittance/impedance
control methods or the use of different learning methods for this
type of guidance are given. The authors show that a key aspect of
robot programming is for the operator to consider the robot as a
reduced-mass tool. The result is an ability to intuitively learn how
to use a robot, even for an operator who has no experience with
robotics. The article also excellently demonstrates the possibility
of using an FT sensor for this purpose. Simultaneously, the au-
thors focus on gravity compensation during manual guidance of
the robot using an FT sensor.

Jamone et al. (2014) describe the use of a six-axis FT sensor
on a humanoid robotic arm. In this case, the FT sensor was used
to detect the internal and external forces acting on the robotic

arm. The article also presents the control strategies for a robotic
arm without knowledge of the environment. A similar system is
also addressed by Jo et al. (2013), whereby a robotic arm is used
to grasp objects. It is equipped with FT sensors with gravity com-
pensation, and the control is designed based on torque-to-velocity
transformation using FT sensors.

Peng et al. (2021) have presented a robotic assembly meth-
odology for the manufacture of large, segmented composite struc-
tures. A robot wrist-mounted FT sensor enables gentle but secure
panel pickup and placement. Human-assisted path planning
ensures reliable collision-free motion of a robot with a large load in
a tight space. This work demonstrates the versatility of sensor-
guided robotic assembly operations in a complex end-to-end task
using the open-source Robot Operating System (ROS) software
framework.

A very interesting way of using an FT sensor is presented by
Zhao et al. (2020). In their work, the peg-in-hole approach for a
six-parallel-legged robot is proposed. An FT sensor is used to
plan the trajectory in real time to mate the peg and the hole.

Lee et al. (2016) and Zhang et al. (2019) deal with hand-
guiding learning as a more suitable alternative for the learning of
industrial robots rather than learning with a teach pendant. How-
ever, these authors do not suggest manual guidance using an FT
sensor but rather a sensorless guiding method based on torque
control on the robotic arm's motors. This method depends on the
robot's exact dynamic model, which is not always available (espe-
cially in the case of commercial manufacturers). Moreover, com-
mercial manufacturers of robotic systems may not allow new robot
control methods to be implemented. Current FT sensors can
extend such functionality on a commercially available robot and
quickly detect forces and torques. At the same time, the price of
FT sensors has dropped dramatically recently. An example of
such an innovative sensor is given in a previous work (Noh et al.,
2016). An example of a similar sensor, which is used in our re-
search, is the Optoforce sensor (https://www.code-
n.org/blog/finalist-optoforce-hungary-sensors-for-the-internet-of-
things/, 2015). Optoforce is a young innovative spin-off company
that has already been bought by OnRobot
(https://www.crunchbase.com/organization/optoforce, 2020), with
renaming of the original sensor as HEX FT sensor
(https://onrobot.com/en/products/hex-6-axis-force-torque-sensor,
2021).

FT sensing has great applications not only in hand-guiding of
robots but also in other controls, as demonstrated by Safeea et al.
(2019), Jamone et al., (2014), and Jo et al. (2013). Furthermore,
in the Strategic Research Agenda for Robotics in Europe 2014–
2020 (https://www.eu-robotics.net/cms/upload/topic_groups/SRA
2020_SPARC.pdf, 2020), emphasis is placed on sensor-based
safety systems to enhance human–robot interaction, multiple
degrees of freedom, tactile feedback, and physical human–robot
interaction. The technology that would lead to these goals is
described in this strategic document as the compliant control of a
complex mechanical structure with visual and tactile perception of
human interaction to produce intuitive physical interfaces. This is
exactly what hand guiding of a robot using a force sensor fulfills.

FT sensors can be used effectively in various applications with
industrial robots, but they are also often used as safety sensors.
This is demonstrated, for example, in the article by González et al.
(2021). The authors demonstrate an advanced teleoperation and
control system for industrial robots in order to assist the human
operator to perform tasks such as sanding, deburring, finishing,
grinding, polishing, and so on. An FT sensor mounted on the robot

https://www.code-n.org/blog/finalist-optoforce-hungary-sensors-for-the-internet-of-things/
https://www.code-n.org/blog/finalist-optoforce-hungary-sensors-for-the-internet-of-things/
https://www.code-n.org/blog/finalist-optoforce-hungary-sensors-for-the-internet-of-things/

DOI 10.2478/ama-2021-0023 acta mechanica et automatica, vol.15 no.3 (2021)

179

end effector is utilized as a safety indicator to stop the motion of
the robot system when the sensor measurements are abnormally
large.

As mentioned earlier, in our research, we use the Optoforce
sensor, specifically, the HEX-70-CE-2000N version. The sensor is
composed of a system of three three-axis hemispherical sensors.
The sensors are inserted between two cylindrical aluminum plates
with a diameter of 70 mm. The range of measured forces varies
depending on the measurement axis. The highest measurable
value of the force is in the Fz axis. The manufacturer specifies its
value at 2000 N. At certain pressures in the Fz axis, the silicone
forms a protective layer around the sensors to prevent damage.
As a result of the flexible properties of silicone, the sensors can
withstand a maximum possible overload in one axis of up to 200%
of the specified nominal value without permanent damage. When
obtaining data from the sensor, we used a reading frequency of
100 Hz, while the maximum possible frequency is 1 kHz. This
sensor is characterized by high resolution, the possibility of use
with various robots, and a relatively low price. There is also a
package for this sensor in the ROS environment
(https://github.com/shadow-robot/optoforce, 2020), used in the
presented research.

The advantages of our solution compared to the solutions de-
scribed earlier are the following:

 The solution is developed using several open-source modules
in ROS. These include the following standard packages:

 MoveIt - motion planning framework designed primarily for
trajectory planning and inverse kinematics calculation
based on selected algorithms;

 Gazebo - a simulation environment that allows simulating
the dynamics of a robot;

 ros_control and ros_controllers - set of software packages
for the use and development of robot controllers; and

 RViz - a three-dimensional visualization tool.

 Considering that open-source modules are used, the solution
is easily extensible and scalable, which is not the case with
the closed proprietary systems described earlier.

 The solution can be easily and quickly implemented on vari-
ous robots – from standard industrial robotic arms through
power-sensitive robots to mobile manipulators. This ad-
vantage is also made possible by the use of ROS.

 Based on the force acting on the sensor, a planning process is
periodically started, which generates the currently required
trajectory for the robot effector. In contrast, rescheduling and
exchanging the trajectory takes place smoothly in terms of po-
sition and speed without interruption of movement.

 Trajectory planning is constantly monitored so that a plan that
would cause a fundamental change in arm configuration (e.g.,
from the elbow up to elbow down) is not triggered. These
changes can occur either near a configuration where a joint is
approaching a constraint or close to singular configurations.
Such a plan is assessed as risky, and its execution is sus-
pended.

3. COMPONENTS AND METHODOLOGY

When implementing the solution of manual robot guidance
based on an FT sensor, the ROS framework was used, enabling
the design and verification of robot control algorithms without the
need for physical connection of the robot. The advantage of this
solution is that the same implementation can be redirected to a

real robot's control. The ROS acts as an interconnection element
between the systems.

The control algorithms were verified on the model of the in-
dustrial manipulator KUKA KR16, which consists of models of
individual parts of the robot provided in stereolithography (STL)
file format, and their kinematics is defined using the unified robot
description format (URDF). These models and the URDF are
available in ROS-Industrial, which contains experimental packag-
es for KUKA manipulators, including the kuka_kr16_support
package (https://www.crunchbase.com/organization/optoforce,
2020). Other important components are MoveIt, ros_control,
Gazebo, and RViz; the necessary configuration files for these
components are described later in the “Configuration” section.

To integrate the Optoforce sensor into the system, an opto-
force package was used, which contains an ROS node for operat-
ing the FT sensor (https://github.com/shadow-robot/opto-force,
2020). As shown in Section 4, the sensor measurements suffer
from noise, drift, and bias; therefore, the acquired data need to be
preprocessed. The force and torque vectors are then computed
from the processed sensor measurements.

To perform a robot motion corresponding to the applied force,
motion planners have been utilized. The input to the motion plan-
ner is usually the current and final pose of the robot effector.
Therefore, we need to determine the position vector 𝒑 of the
desired point in the robot workspace to which the robot effector
will be moved. Assuming that the position vector is expressed in
the effector’s coordinate system, it can be computed by a simple

proportional reduction of the force vector 𝑭 using the proportional

constant 𝑘p according to Eq. (1).

𝒑 = 𝑘𝑝𝑭 (1)

Such a point can be regarded only as an auxiliary point, and
there is no need to completely achieve this position during robot
motion. However, the magnitude of the position vector may be
used to determine the desired speed of the robot effector during
hand guidance; in this context, the safety of the operator must be
ensured by limiting the speed. The value of the proportional con-

stant 𝑘p = 0.002 m/N was determined experimentally.

Initially, in our research, the planning process was performed
using the MoveIt framework, which is described in Section 7.1;
however, we find this approach to be unsuitable. Therefore, the
new planning method described in Section 7.2 was implemented.

4. SENSOR DATA PREPROCESSING

To interconnect the Optoforce sensor with the ROS platform,
installing the Optoforce driver was necessary (https://github.com/
shadow-robot/optoforce, 2020). The driver uses the pySerial
library to retrieve data from the sensor via the Universal Serial
Bus. The data frequency is set to 100 Hz by default. During initial-
ization, the configuration parameters are read, including coeffi-
cients for conversion from device-specific units to newtons and
newton-meters. When started, the driver publishes messages to a
topic called optoforce_0. The messages are in the ROS format
called geometry_msgs/ WrenchStamped. The data message
contains the force and torque vectors' coordinates acting on the
sensor in the sensor coordinate system, which is aligned with the
tool0 system. Tool0 is defined in the URDF description of the
robot as the coordinate system of the effector.

Before the sensor data can be used, the sensor must be cali-
brated. A series of experiments were performed to determine the

Radovan Gregor, Andrej Babinec, František Duchoň, Michal Dobiš DOI 10.2478/ama-2021-0023
Hand Guiding a Virtual Robot Using a Force Sensor

180

calibration parameters. As an example, the calibration of the
sensor in the Z-axis is described. The sensor was placed such
that the gravitational force acts only in the opposite direction of its
axis. At zero static load, a zero-output value is assumed, and at a
load of 1 kg, an output value of –9.806 N is assumed. Table 1
shows the average output values for the indicated number of
samples.

Tab. 1. Evaluation of the uncalibrated sensor output

Number
of

samples

Used
weight,

kg

Theoretical
output, N

Maximum
acquired
output, N

Minimum
acquired
output, N

Average
acquired
output, N

Average
deviation,

N

6,578 0 0 2.1226 0.7075 1.4258 1.4258

7,898 1 –9.806 –4.0094 –5.8962 –5.2917 3.0885

Figure 1 shows that the sensor values fluctuate significantly
under static load. Another measurement lasting longer at zero
load revealed that the identified deviation is accompanied by drift,
as evidenced in Fig. 2. Based on the measurements, the function-
ality was approximated by a first-order polynomial, as follows:

𝑓(𝑥) = 0.26924𝑥 + 2.923 (2)

Fig. 1. Fluctuation of the sensor outputs at zero and nonzero static loads

Fig. 2. Experiment revealing the drift of the sensor output value

Tab. 2. Measuring the transfer characteristic

Measurement
number

Used
weight,

kg

Gravitational
force, N

Acquired
output,

N

Measurement error

Absolute,
N

Relative,
%

1 1.00 9.806 28.412 18.606 189.70

2 1.97 19.317 60.51 41.193 213.20

3 4.38 42.95 123.12 80.17 186.00

4 10.09 98.942 315.6 216.658 218.9

5 20.40 200.042 638.15 438.108 219.00

Based on the other measurements listed in Table 2, the trans-
fer characteristic between the actual and measured data was
interpolated, as in Eq. (3).

𝑓(𝑥) = 3.218𝑥 − 5.633 (3)

Using this relationship, the average relative error dropped to
5.65%. Calibration had to be done for the other axes similarly.

5. VISUALIZATION OF PROCESS

The KUKA KR16 robot model was visualized in the RViz envi-
ronment. The magnitude and direction of the force acting on the
Optoforce sensor, located on the sixth axis of the robot, are used
to determine the new point to which the robot is moving. This
point’s position vector expressed in the effector coordinate system
is represented by a red arrow starting from the center of the tool0
coordinate system (Fig. 3). The visualization of the vector is dy-
namic, depending on the actual force applied to the sensor.

Fig. 3. Visualization of the KUKA KR16 robot model in the RViz

environment with the position vector of the point to which the robot
is moving

For detailed visualization of the data from Optoforce, the tool
from the ROS Qt (RQt) framework that monitors the topic of opto-
force_0, was used. The output is the time-dependent data shown

DOI 10.2478/ama-2021-0023 acta mechanica et automatica, vol.15 no.3 (2021)

181

in Fig. 4. In the RViz environment, the results are reconstructed
from the detected force and torque components and visualized
with an arrow as the force and torque vectors using the
WrenchStamped module (Fig. 5).

Fig. 4. Visualization of data from Optoforce by monitoring the topic of

optoforce_0

Fig. 5. Force and torque vectors reconstructed from the detected force

and torque components

6. CONFIGURATION OF SOLUTION

The kinematic model of the KUKA KR16 industrial manipulator
is described in the URDF format. This model needs to be extend-
ed with the manipulator's dynamic properties, such as weights,
centers of gravity, and moments of inertia of all moving parts of
the robot. These values are approximately calculated in the com-
puter-aided design (CAD) software based on the geometry and
material properties. They are then exported to the URDF format
via the SolidWorks to URDF (SW2URDF) plugin.

An example of the modified parameters for link 1:

~/catkin_ws/src/kuka/robots/kuka.urdf
...
2 <inertial>
3 <origin rpy="0 0 0" xyz="0 0 0"/>
4 <mass value="21.654"/>

// default value: 2 kg

5 <inertia ixx="0.5521" ixy="0.046477"

ixz="0.28985" iyy="0.81346"

iyz="0.050687" izz="0.71343"/>
// default values: 0.01 Kg*m^-2
6 </inertial>

...

For the correct simulation in Gazebo, it is important to add in-
formation about the URDF structure into the <transmission> part.
This part defines the relationship between drives and joints. Since
the MoveIt tool is also used for trajectory planning, in addition to
the URDF, it is necessary to create a Semantic Robot Definition
Format (SRDF) file that describes the mutual collision positions of
individual robot arms, virtual joints, planning groups, fixed joints,
and other parameters related to the movement and interaction of
the robot with the environment. This file is created by the MoveIt
Setup Assistant, which provides a graphical interface for configu-
ration. The default algorithm from the Kinematics and Dynamics
Library (KDL) is used to calculate the inverse kinematics, and the
Open Motion Planning Library (OMPL) is used for trajectory plan-
ning as it includes the RRTConnect algorithm, which is selected
as a planner for MoveIt. Later, in our proposed planning method, a
linear interpolation is used between the individual transition points
located on the calculated planned trajectory.

To link MoveIt and Gazebo, a JointTrajectory controller is
used. This controller is defined in a configuration file in Yet Anoth-
er Markup Language (YAML) format, where the proportional–
integral–derivative (PID) parameters of the positioner and the
frequency of publishing the joint status are defined. In Fig. 6, an
rqt_graph of the connection between the controller and Gazebo
can be seen.

Fig. 6. Rqt_graph showing the connection between the controller

and Gazebo

7. IMPLEMENTATION

The article compares two approaches. The first is the use of
all available packages and the planning of robot movements using
the MoveIt planner. This approach's disadvantage is that the robot
always stops after the trajectory is completed to start planning a
new movement. The second approach assumes the implementa-
tion of an own planning algorithm, which eliminates this problem,
and the planned trajectory is modified while the robot is moving.

7.1. Planning with MoveIt

After configuring the system, a node was created with an algo-
rithm to control the manipulator's movement. The controller ac-
cesses the data from the sensor by retrieving messages from the
topic optoforce_0. Based on this, it is possible to create a result-

Radovan Gregor, Andrej Babinec, František Duchoň, Michal Dobiš DOI 10.2478/ama-2021-0023
Hand Guiding a Virtual Robot Using a Force Sensor

182

ant vector of the applied force, which defines the desired direction
of movement of the robot's endpoint. Subsequently, we can de-
termine the position vector of the point to which the robot effector
is moved. Since the planner works with the coordinates relative to
the robot’s base coordinate system, the coordinates of the posi-
tion vector of the target position are transformed into the base
coordinate system. The orientation of the effector is changed
similarly. Based on the resulting torque vector acting on the sen-
sor, the effector's required orientation is also calculated as a
proportional reduction of the torque vector. Using the move-
it::planning_ interface::MoveGroup class and its getCurrentPose()
method to get the current position of the effector, the effector's
current position is acquired. The request to plan a new trajectory
must contain the target position and orientation (ROS message
geometry_msg::Pose), which is sent to MoveIt using the plan()
method, and the output is the new trajectory. The trajectory is
formed by a series of waypoints that have all the joint positions
explicitly specified. The resulting trajectory is then sent to a con-
troller that controls the position of the joints.

7.2. Planning with the proposed algorithm

The disadvantage of the move_group node is that further
planning and control are possible only after the current task is
completed. Therefore, the move_group node waits until it receives
information from the server about reaching the goal. This results
in the robot stopping at each point determined by the computed
position vector. By using the FollowJointTrajectory motion service,
it is possible to obtain smoother movements. This control system
implements a method for replacing a part of the planned trajecto-
ry. It allows rescheduling of the trajectory and launching of a new
plan at a specific time. When we send a new message of the type
trajectory_msgs/JointTrajectory, the controller joins the trajecto-

ries at time 𝑡∗ specified in the new message's header. At 𝑡∗, the
controller switches from the previous trajectory to follow the new
trajectory as depicted in Fig. 7.

Fig. 7. Principle of the joint trajectory switching

It is important to ensure that the positions and velocities at
time 𝑡∗ are the same for both trajectories. For this purpose, the
call to the query_state service is used, which provides the infor-
mation about the current trajectory's future positions and velocities
at the requested time (Joint Trajectory Action Controller, Official
webpage ROS Documentation, 2020).

The planning algorithm can then use different interpolation
techniques to generate a joint path from the current position and

velocity at time 𝑡∗ to an auxiliary position given by the position
vector 𝒑 calculated using Eq. (1). In our case, we used interpola-

tion based on a cubic polynomial. It is then needed to specify the
constraint conditions, which are the initial and final positions of the

joints 𝒒(𝑡0) and 𝒒(𝑡𝑓), as well as the initial and final velocities in

the joints �̇�(𝑡0) and �̇�(𝑡𝑓), to ensure that the positions and

velocities at time 𝑡∗ are the same for the current and the replacing
trajectories. The acceleration will not be limited in any way, so we
anticipate that there will be a step change in the acceleration
when switching from one trajectory to another. However, the
controller in the robot's joints can handle this step change without
major problems. Based on the limiting conditions and the require-
ment of the cubic shape of the polynomial, we can compile a set
of equations for one joint, as in Eq. (4), which can be rewritten into
a matrix shape, as in Eq. (5) [24]. The polynomials' coefficients
can then be calculated according to the equations in Eq. (6),
which were derived from Eq. (5). The trajectory for each joint of
the manipulator is formulated likewise.

𝑞(𝑡0) = 𝑎0 + 𝑎1𝑡0 + 𝑎2𝑡0
2 + 𝑎3𝑡0

3

�̇�(𝑡0) = 𝑎1 + 2𝑎2𝑡0 + 3𝑎3𝑡0
2

𝑞(𝑡𝑓) = 𝑎0 + 𝑎1𝑡𝑓 + 𝑎2𝑡𝑓
2 + 𝑎3𝑡𝑓

3 (4)

�̇�(𝑡𝑓) = 𝑎1 + 2𝑎2𝑡𝑓 + 3𝑎3𝑡𝑓
2

[

𝑞(𝑡0)

�̇�(𝑡0)

𝑞(𝑡𝑓)

�̇�(𝑡𝑓)]

=

[

 1

0

1

0

𝑡0

1

𝑡𝑓

1

𝑡0
2

2𝑡0

𝑡𝑓
2

2𝑡𝑓

𝑡0
3

3𝑡0
2

𝑡𝑓
3

3𝑡𝑓
3

]

∙ [

𝑎0

𝑎1

𝑎2

𝑎3

] (5)

𝑎0 = 𝑞0 𝑎2 =
3(𝑞𝑓−𝑞0)−(2�̇�0+�̇�𝑓)(𝑡𝑓−𝑡0)

(𝑡𝑓−𝑡0)
2

𝑎1 = �̇�0 𝑎3 =
−2(𝑞𝑓−𝑞0)+(�̇�0+�̇�𝑓)(𝑡𝑓−𝑡0)

(𝑡𝑓−𝑡0)
3

 (6)

Fig. 8. Block diagram of the proposed system with continuous replanning

procedure reacting on sensor readings

We obtained the initial position and velocity of the planned tra-
jectory from the query_state service. The initial time of the

planned trajectory will therefore be 𝑡0 = 𝑡∗. For safety reasons,
the final speed �̇�(𝑡f) is set to 0 ms−1. However, during the con-
tinuous planning process, the robot will not stop because the next
new planned trajectory will overwrite the current trajectory after

time 𝑡∗, and the zero speed requirement is delayed. The joints'
final positions must be calculated using inverse kinematics from

the position vector 𝒑 of the target position obtained from the data
from the force sensor, as shown in Fig. 8. To calculate the inverse

DOI 10.2478/ama-2021-0023 acta mechanica et automatica, vol.15 no.3 (2021)

183

kinematics in MoveIt, there is a dedicated setFromIK() method in
the RobotState class.

7.3. Increasing the security of the solution

Since the planned trajectories are created from linear sections
to ensure their unambiguity, there may be sudden undesirable
changes in the arm's configuration (see Fig. 10) near the singulari-
ty or joint limit. Therefore, it is necessary to limit the resulting
solution. If the arm configuration reaches such a position that one
of the joints approaches the limit of its range (Fig. 9), then the new
planned position in the original configuration would not be achiev-
able. It would be necessary to rotate one or more joints into an-
other overall arm configuration. From the point of view of manual
guidance operation, this movement would be dangerous. There-
fore, a new node has been created to monitor and limit potentially
dangerous configuration changes.

Fig. 9. Two different arm configurations for the same effector position:

(a) elbow up; (b) elbow down

Fig. 10. Displaying a change in the configuration of the arm,

which is forced by the need to rotate the first joint by 360° during
the execution of MoveIt

Furthermore, it is also necessary for a more realistic simula-
tion to limit the space in which it is possible to plan future target
positions. We limited the planning space by adding collision ob-
jects, through which the planned trajectory must not pass. Thus, a
floor was created on which the robot is placed, and the workspace
of the robot was also partially limited, which is further shown in
Fig. 17.

7.4. Teaching the path of a robot by guidance

The teaching process is simple and is performed during man-
ual navigation. Whenever the arm stops because no force is
applied to the sensor, its current position and orientation in the
Cartesian system can be written to the file (these points are
shown in Fig. 11 under the label data 2). When teaching is com-
plete, all memorized positions and orientations are uploaded to
the ComputeCartesianPath service. This will create additional
extra positions, which can be seen as data 1 in the same image.
The entire trajectory is then planned as one continuous move-
ment.

Fig. 11. Points written to a file during the manual navigation (data 2) and

extra points created by ComputeCartesianPath service (data 1)

8. EXPERIMENTS

During the experimental verification of the solution, it was first
necessary to verify whether it is possible for MoveIt to enter the
desired target positions based on calculation of the position vec-
tors of these points from the force vector. It was also necessary to
verify what positioning error occurs with this solution. In Fig. 12,
an arrow with blue label shows the position vector pointing from
the tool coordinate system, obtained from the resultant force
vector. This vector points to the desired target position. The
cusped line with orange label represents the planned motion
trajectory with the individual nodal points. The endpoint of the
manipulator moves along the orange trajectory. The inaccuracy of
the reached target position compared to the planned one was 0.1
mm, which is an acceptable deviation when manually guiding the
robot via the FT sensor.

Subsequently, the sequential planning of trajectories was veri-
fied using MoveIt while pressure was applied to the sensor in the
desired direction. The planned trajectory for the new calculated
point was prepared immediately after completing the execution of
the previous plan. The chart in Fig. 13 shows the shortcoming of
this method, as the robot stops every time it passes the appropri-
ate trajectory.

a)

b)

Radovan Gregor, Andrej Babinec, František Duchoň, Michal Dobiš DOI 10.2478/ama-2021-0023
Hand Guiding a Virtual Robot Using a Force Sensor

184

Fig. 12. Position vector pointing from the tool coordinate system

to the desired position of the effector (arrow with blue label), and
the planned trajectory with its via points (cusped line with orange
label)

Fig. 13. Triangle-like lines represent speeds in the joints. It is obvious that

the robot will stop between the individual plans

Fig. 14. Basic experiment to verify the implementation of polynomial

interpolation performed on one joint. The output of the algorithm
is the desired trajectory for the position, speed, and acceleration

The proposed algorithm eliminates these unwanted stops and
provides smooth transitions between successive trajectories. First,
verification of the algorithm was performed on one of the joints.
The joint trajectory planning based on polynomial interpolation
works as expected. The limiting conditions in this experiment were

determined as follows: initial joint position 𝑞(𝑡0) = 0 rad, final

joint position 𝑞(𝑡𝑓) = 3.11723 rad, and the initial and final joint

speeds �̇�(𝑡0) = 0 rad/s and �̇�(𝑡𝑓) = 0
rad

s
, respectively. In

Fig.14, we see the resulting desired trajectories for the position,
speed, and acceleration.

To verify the algorithm's functionality with continuous trajecto-
ry replanning, an experiment was created with smooth switching
of planned trajectories. We can use the same trajectory planned in
the previous experiment, and additionally, we request a switch to

the new trajectory at time 𝑡∗ = 1.84 s. We send a request to the
query_state service with a timestamp equal to 𝑡∗. The response is

the future value of the position 𝑞(𝑡∗) = 0.882 rad and speed

�̇�(𝑡∗) = 0.807 rad/s. We use these values as the initial limiting
conditions for generating a new desired trajectory. For safety

reasons, we set the final limiting condition for speed to �̇�(𝑡𝑓) =

0 rad/s. During normal manual guidance, the value of the final
joint position in the new trajectory is given based on the inverse
kinematics from the point in space to which the position vector
(computed from the acting force) is directed. In other words, the
trajectories are replanned periodically, and application of some
amount of force causes changes in the limiting conditions used in
the polynomial interpolation. For this experiment's purpose, how-
ever, we consider the joint's target position to be the value

𝑞(𝑡𝑓) = 0 rad. The resulting desired trajectory is shown in Fig.

15. A new trajectory is created by combining the two plans, where
there is no interruption of movement in position or speed, but the
movements follow each other smoothly. We can see in Fig. 15
that before the moment of 1.84 s, the values with index “1” are
valid, and after this moment, the values with index “2” are valid.
The original values of the first trajectory after time 𝑡∗ = 1.84 s
are shown in dashed lines. With a cubic trajectory, the accelera-
tion change is not continuous, but the controller can regulate this
step change.

Fig. 15. Verification of the algorithm's functionality with continuous de-

sired trajectory replanning

DOI 10.2478/ama-2021-0023 acta mechanica et automatica, vol.15 no.3 (2021)

185

Fig. 16. Continuous trajectory replanning simultaneously in all six de-

grees of freedom of the robotic manipulator

A similar experiment was performed to smoothly switch to new
desired trajectories simultaneously in all six degrees of freedom of
the robotic manipulator. The result is shown in Fig. 16.

Finally, the additional space constraints of the robot were also
verified. If the robot is manually guided by a sensor to move, such
a planned trajectory that will pass through collision objects does
not apply, and the robot stops. Fig. 17 shows in red the force
vector that acts on the robot via the FT sensor in the effector's
coordinate system and forces it to collide with the floor. However,
this plan was assessed as dangerous, and therefore no collision
occurred.

Fig. 17. The environment where the space constraints

of the robot were verified

9. CONCLUSION

This article presented the implementation of the Optoforce
HEX-70-CE-2000N sensor into the ROS framework for use in
manual robot guidance. It was also shown that the sensor needs
to be properly calibrated. In the ROS environment, the robot
controllers were set so that the control of the robot endpoint also
considers the influence of external forces measured on the Opto-
force sensor. These are reconstructed as the force and torque
vectors from the detected forces in all degrees of freedom. This
work verifies the algorithm of motion planning of the virtual manip-
ulator's effector based on the action of forces and torques on the
force sensor using the basic settings of the MoveIt framework.
This method of motion planning proved to be insufficient for the
needs of the robotic effector's manual guidance because the robot

is stopped after the execution of each scheduled partial trajectory.
Therefore, our research was focused on the design and verifica-
tion of a robot motion planning algorithm that uses polynomial
interpolation and allows the continuous merging of subplans,
which is necessary for online manual guidance. Experimental
verification of the solution shows a smooth connection between
the original and the new plans. The required trajectory is obtained
without a step change in position and speed. To bring the simula-
tion closer to reality, the selected implementation's basic spatial
and speed limitations were added to the solution. At the same
time, this increased the solution's safety, which is very important
in manual guidance.

In future work, we will focus on optimizing the planning system
to accelerate responses to changes in force concerning ergonom-
ics for the operator. The system supervising the appropriate selec-
tion of the inverse kinematics solution will also be optimized to
eliminate random selection and ensure the calculation of the
solution taking into account the robot's current configuration. One
of the options that will be verified in connection with this problem
is the IKfast solver. Finally, the proposed system will be deployed
and verified on a real robot.

REFERENCES

1. Jamone L., Fumagalli M., Natale L, Nori F. (2014), Control of
physical interaction through tactile and force sensing during visually
guided reaching, 2014 IEEE International Symposium on Intelligent
Control (ISIC), 1360-1365.

2. Experimental Packages for KUKA manipulators with ROS-Industrial
(2020), https://github.com/ros-industrial/kuka_experimental

3. González C., Solanes J.E., Muñoz A., Gracia L., Girbés-Juan V.,
Tornero J. (2021), Advanced teleoperation and control system for
industrial robots based on augmented virtuality and haptic feedback,
Journal of Manufacturing Systems, 59, 283-298.

4. Jo J., other authors (2013), Grasping force control of a robotic hand
based on a torque-velocity transformation using F/T sensors with
gravity compensation, IECON 2013-39th Annual Conference of the
IEEE Industrial Electronics Society, 4150-4155.

5. Joint Trajectory Action Contoller, Official webpage ROS Documenta-
tion (year), http://wiki.ros.org/robot_mechanism_controllers/JointTraje
ctoryActionController

6. Lee S.-D., Ahn K.-H., Song J.-B. (2016), Torque control based
sensorless hand guiding for direct robot teaching, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
745-750.

7. Loske J., Biesenbach R. (2014), Force-torque sensor integration in
industrial robot control, 15th International Workshop on Research
and Education in Mechatronics (REM, 1-5.

8. Massa D., Callegari M., Cristalli C. (2015), Manual guidance for
industrial robot programming, Industrial Robot: An International Jour-
nal, 42(5), 457-465.

9. Matheson E., Minto R., Zampieri, E.G., Faccio M., Rosati G.
(2019), Human–Robot Collaboration in Manufacturing Applications: A
Review, Robotics, 8(4), 100.

10. Noh Y., Bimbo J., Sareh S., Wurdemann H. (2016), Multi-axis
force/torque sensor based on simply-supported beam and optoelec-
tronics, Sensors, 16(11), 1936.

11. Peng Y.C., Chen S., Jivani D., Wason J., Lawler W., Saunders G.,
Wen, J. (2021), Sensor-Guided Assembly of Segmented Structures
with Industrial Robots, Applied Sciences, 11(6), 2669.

12. Reyes-Uquillas D., Hsiao, T. (2021), Safe and intuitive manual
guidance of a robot manipulator using adaptive admittance control
towards robot agility, Robotics and Computer-Integrated Manufactur-
ing, 70, 102127.

http://wiki.ros.org/robot_mechanism_controllers/JointTrajectoryActionController
http://wiki.ros.org/robot_mechanism_controllers/JointTrajectoryActionController

Radovan Gregor, Andrej Babinec, František Duchoň, Michal Dobiš DOI 10.2478/ama-2021-0023
Hand Guiding a Virtual Robot Using a Force Sensor

186

13. Safeea M., Béarée R., Neto P. (2017), End-effector precise hand-
guiding for collaborative robots, Iberian Robotics conference. Spring-
er, Cham, 595-605.

14. Safeea M., Bearee R., Neto, P. (2017), End-effector precise hand-
guiding for collaborative robots, Iberian Robotics conference,
595-605, Springer, Cham.

15. Safeea M., Neto P., Béarée R. (2019), Precise hand-guiding of
redundant manipulators with null space control for in-contact obstacle
navigation, IECON 2019-45th Annual Conference of the IEEE Indus-
trial Electronics Society, 693-698.

16. Spong M.,Hutchinson S.,Vidyasagar M. (2005), Robot modeling
and Control, 1st Edition. Wiley.

17. Zhang S., Wang S., Jing F., Tan M. (2019), A sensorless hand
guiding scheme based on model identification and control for indus-
trial robot, IEEE Transactions on Industrial Informatics, 15(9),
5204-5213.

18. Zhao Y., Gao F., Zhao Y., Chen, Z. (2020), Peg-in-Hole Assembly
Based on Six-Legged Robots with Visual Detecting and Force Sens-
ing, Sensors, 20(10), 2861.

19. https://github.com/shadow-robot/optoforce, (2020)
20. https://ifr.org/free-downloads/, (2020)
21. https://onrobot.com/en/products/hex-6-axis-force-torque-sensor,

(2021)
https://www.code-n.org/blog/finalist-optoforce-hungary-sensors-for-
the-internet-of-things/, (2015)

22. https://www.crunchbase.com/organization/optoforce, (2020)
23. https://www.eu-robotics.net/cms/upload/topic_groups/SRA2020_

SPARC.pdf, (2020)

This publication was created with support under the Operational Program
Integrated Infrastructure for the project "Robotized cell for intelligent
welding of small volume production (IZVAR)", code ITMS2014+:
313012P386, cofinanced by the European Regional Development Fund.

The authors also gratefully acknowledge the contribution of the Slovak
Research and Development Agency under the project APVV-17-0214
and the contribution of the Scientific Grant Agency of the Slovak Republic
under the grant 1/0754/19.

Radovan Gregor: https://orcid.org/0000-0002-9498-6768

Andrej Babinec: https://orcid.org/0000-0001-5550-2583

František Duchoň: https://orcid.org/0000-0003-4140-9737

Michal Dobiš: https://orcid.org/0000-0002-2453-212X

https://orcid.org/0000-0002-9498-6768
https://orcid.org/0000-0001-5550-2583
https://orcid.org/0000-0003-4140-9737
https://orcid.org/0000-0002-2453-212X
https://github.com/shadow-robot/optoforce
https://ifr.org/free-downloads/
https://onrobot.com/en/products/hex-6-axis-force-torque-sensor
https://www.eu-robotics.net/cms/upload/topic_groups/SRA2020_SPARC.pdf
https://www.eu-robotics.net/cms/upload/topic_groups/SRA2020_SPARC.pdf

