PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others. This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield. The ~505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5-11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8-17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.
Czasopismo
Rocznik
Strony
1989--2019
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine
Bibliografia
  • Červený, V., and I. Pšenčík (1984), SEIS83 – Numerical modeling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: E.R. Engdal (ed.), Documentation of Earthquake Algorithms, Rep. SE-35, World Data Center A for Solid Earth Geophysics, Boulder, USA, 36-40.
  • Grad, M., and A.A. Tripolsky (1995), Crustal structure from P and S seismic waves and petrological models of the Ukrainian shield, Tectonophysics 250, 89- 112.
  • Guterch, A., M. Grad, R. Materzok, and E. Perchuć (1986), Deep structure of the Earth’s crust in the contact zone of the palaeozoic and precambrian platforms in Poland (Tornquist–Teisseyre zone), Tectonophysics 128, 251-279.
  • Hobro, J.W.D. (1999), Three-dimensional tomographic inversion of combined reflection and refraction seismic travel-time data, Ph.D. Thesis, Department of Earth Sciences, University of Cambridge, Cambridge.
  • Hobro, J.W.D., S.C. Singh, and T.A. Minshull (2003), Three-dimensional tomographic inversion of combined reflection and refraction seismic travel time data, Geophys. J. Int. 152, 1, 79-93.
  • Hole, J.A. (1992), Nonlinear high resolution three-dimensional seismic travel time tomography, J. Geophys. Res. 97, 6553-6562.
  • Komminaho, K. (1998), Software manual for programs MODEL and XRAYS: A graphical interface for SEIS83 program package, Rep. 20, University of Oulu, Dept. of Geophysics, 31 pp.
  • Korenaga, J., W.S. Holbrook, G.M. Kent, P.B. Kelemen, R.S. Detrick, H.-C. Larsen, J.R. Hopper, and T. Dahl-Jensen (2000), Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, J. Geophys. Res. 105, 21591-21614.
  • Koulakov, I. (2009), LOTOS code for local earthquake tomographic inversion: benchmarks for testing tomographic algorithms, Bull. Seismol. Soc. Am. 99, 1, 194-214, DOI: 10.1785/0120080013.
  • Malinowski, M. (2013), Models of the Earth’s crust from controlled-source seismology – where we stand and where we go? Acta Geophys. 61, 6, 1437-1456, DOI: 10.2478/s11600-013-0156-7.
  • Meléndez, A., J. Korenaga, V. Sallarès, A. Miniussi, and C.R. Ranero (2015), TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test, Geophys. J. Int. 203, 1, 158-174, DOI: 10.1093/gji/ggv292.
  • Moser, T.J. (1991), Shortest path calculation of seismic rays, Geophysics 56, 1, 59- 67, DOI: 10.1190/1.1442958.
  • Rawlinson, N., and M. Urvoy (2006), Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania, Geophys. Res. Lett. 33, L24313, DOI: 10.1029/2006GL028105.
  • Starostenko, V., T. Janik, D. Lysynchuk, P. Środa, W. Czuba, K. Kolomiyets, P. Aleksandrowski, O. Gintov, V. Omelchenko, K. Komminaho, A. Guterch, T. Tiira, D. Gryn, O. Legostaeva, H. Thybo, and A. Tolkunov (2013), Mesozoic(?) lithosphere-scale buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile, Geophys. J. Int. 195, 2, 740-766, DOI: 10.1093/gji/ggt292.
  • Wessel, P., and W.H.F. Smith (1991), Free software helps map and display data, EOS Trans. 72, 41, 441-446, DOI: 10.1029/90EO00319.
  • Wessel, P., and W.H.F. Smith (1998), New, improved version of the Generic Mapping Tools released, EOS Trans. 79, 47, 579, DOI: 10.1029/98EO00426.
  • Zelt, C.A. (1994), Software package ZPLOT, Bullard Laboratories, University of Cambridge, Cambridge.
  • Zelt, C.A. (1999), Modelling strategies and model assessment for wide-angle seismic traveltime data, Geophys. J. Int. 139, 183-204.
  • Zelt, C.A., and P.J. Barton (1998), 3D seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res. 103, 7.187-7.210.
  • Zelt, C.A., and R.B. Smith (1992), Seismic traveltime inversion for 2D crustal velocity structure, Geophys. J. Int. 108, 1, 16-34.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d50bc33-019e-4f28-beff-394d61ec59fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.