PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on depressurization gas extraction techniques and identification of gas sourcesi goaf based on carbon and hydrogen isotope tracing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the mining environment of coal seams, in order to accurately quantify the gas sources in the goaf of the protective layer working face and effectively implement gas extraction and control, this paper conducts experiments on gas source identification in the goaf in the Pingdingshan mining area. By collecting desorbed gas samples from the parent coal seam, a detailed analysis of the gas components (including methane, ethane, carbon dioxide) as well as the values and distribution characteristics of stable carbon and hydrogen isotopes was conducted. Based on these data, we established a calculation model for gas source identification in the goaf based on stable carbon and hydrogen isotopes and component averages, achieving a quantitative calculation of gas sources from various coal seams as the goaf advances, and implementing depressurization gas extraction techniques for coal seams at a greater distance upward. The results show significant differences in the stable carbon and hydrogen isotopes of desorbed gases from the three coal seams, although the overall trend is relatively consistent. As the burial depth of the coal seam increases, the carbon isotope values of methane, ethane, and carbon dioxide, as well as the hydrogen isotope values of methane, all show a trend of becoming heavier. In addition, the main source of gas in the goaf of the protective layer comes from the downward adjacent coal seam, accounting for 81% of the total source, while the average contribution from the same coal seam is 12%, and the contribution from distant upward coal seams is 7%. By implementing depressurization gas extraction techniques for distant upward coal seams, we also identified the optimal window period for depressurization extraction in the C1 coal seam to be between 85 and 100 days.
Rocznik
Strony
387--402
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Xi’an University of Science and Technology, China
autor
  • Xi’an University of Science and Technology, China
autor
  • Xi’an University of Science and Technology, China
autor
  • Xi’an University of Science and Technology, China
  • Xi’an University of Science and Technology, China
Bibliografia
  • [1] L. Yuan, Strategic thinking of simultaneous exploitation of coal and gas in deep mining [J]. J. China Coal Soc. 41(01), 1-6 (2016). DOI: https://doi.org/10.13225/j.cnki.jccs.2015.9027.
  • [2] G. Qiao, Z. Liu, Y. Zhang, C. Yi, K. Gao, S. Fu, Y. Zhao, Theoretical analysis and engineering application of controllable shock wave technology for enhancing coalbed methane in soft and low-permeability coal seams [J].Int. J. Coal Sci. Technol. 11 (25), 123-142 (2024). DOI: https://doi.org/10.1007/s40789-024-00673-1.
  • [3] Y. Fu, Y. Wu, J. Li, P. Zhou, Z. Sun, J. He, Mechanical properties and energy evolutions of burst-prone coal samples with holes and fillings [J]. Int. J. Coal Sci. Technol. 11 (40), (2024).DOI : https://doi.org/10.1007/s40789-024-00675-z.
  • [4] Q. Hao, A. Cao, C. Wang, Z. Tang, J. Liu, Numerical investigation on damage effect of deep hole pre-cracking roof rock and controlling rockburst [J]. Int. J. Coal Sci. Technol. 12 (1), (2025).DOI : https://doi.org/10.1007/s40789-025-00791-4.
  • [5] W. Zhou, L. Yuan, G.L. Zhang, H.L. Du, S. Xue, G.H. He, Y.C. Han, A new method for determining the individual sources of goaf gas emissions: A case study in Sihe Coal Mine [J]. J. China Coal Soc. 43 (4), 1016-1023 (2018).DOI: https://doi.org/10.13225/j.cnki.jccs.2017.1136.
  • [6] J.H. Shen, Y. Shi, B.Q. Lin, T. Liu, Y. Shen, T. Liu, X.L. Zhang, W. Yang, Study on the influence law of gangue filling structure on the gas emission in adjacent coal seams. J. Clean. Prod. 455, 142339 (2024).DOI : https://doi.org/10.1016/j.jclepro.2024.142339.
  • [7] Z.Q. Lan, G.S. Zhang, Numerical simulation of gas concentration field in multi-source and multi-congruencegoaf [J]. J. China Coal Soc. 32 (4), 396-401 (2007). DOI: https://doi.org/10.3321/j.issn:0253-9993.2007.04.013.
  • [8] W. Zhao, H. Dong, J. Ren, Y. Yuan, K. Wang, F. Wang, A software for calculating coal mine gas emission quantity based on the different-source forecast method [J]. Int. J. Coal Sci. Technol. 11 (51), (2024).DOI : https://doi.org/10.1007/s40789-024-00703-y.
  • [9] M.G. Xu, H. F. Lin, H. Y. Pan, Numerical study of gas migration in mechanized mining gob [J]. J. Hunan Univ. Sci. Technol. Nat. Sci. Ed. 25 (2), 6-9 (2010). DOI: https://doi.org/10.3969/j.issn.1672-9102.2010.02.002.
  • [10] P. Li, Analysis of gas source in 1209 working face of a mine in SHANXI [J]. Inner. Mongolia Coal Eco. 21, 45-46(2018). DOI: https://doi.org/10.3969/j.issn.1008-0155.2018.21.023.
  • [11] F.S. Mei, Pan Yidong Coal Mine of High Gas Coal Seam Coal Face Gas Source and Gas Governance Research [D]. Anhui Uni. Sci. Technol. (2014). DOI: https://doi.org/10.7666/d.Y2696871.
  • [12] X.M. Li, F.Y. Sang, L.L. Sun, C.A. Du, Y.W. Hu, G. Wang, Assessment Method and Application of Gas Resourcesin Abandoned Mine [J]. Min. Res. Dev. 39 (4), 101-104 (2019). DOI: CNKI:SUN:KYYK.0.2019-04-022.
  • [13] Q.T. Hu, Y.P. Liang, J.Z. Liu, CFD simulation of goaf gas flow patterns [J]. J. China Coal Soc. 32 (7), 719-724(2007). DOI: https://doi.org/10.3321/j.issn:0253-9993.2007.07.010.
  • [14] J. Aditya, S. Claire, J.B. Jurgen, F.B. Gregory E., Computational Fluid Dynamics Modeling of a Methane Gas Explosion in a Full-Scale, Underground Longwall Coal Mine [J]. Mining Metall. Explor. 39 (3), 897-916 (2022).DOI: https://doi.org/10.1007/S42461-022-00587-Z.
  • [15] C. Cheng, X.Y. Cheng, H. Gao, W.P. Yue, C. Liu, Prediction of Gas Emissions in the Working Face Based on the Desorption Effects of Granular Coal: A Case Study. Sustainability-Basel 14 (18), 11353-11353 (2022).DOI : https://doi.org/10.3390/su141811353.
  • [16] S.D.Wang, Z. Qing, L.J. Yi, J.Z. Qian, Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation. Appl. Sci. 12 (14), 7328-7328 (2022). DOI: https://doi.org/10.3390/app12147328.
  • [17] Z.Y. Qin, L. Yuan, H. Guo, Q.D. Qu, Investigation of longwall goaf gas flows and borehole drainage performance by CFD simulation [J]. Int. J. Coal Geol. 151-152, 51-63 (2015). DOI: https://doi.org/10.1016/j.coal.2015.08.007.
  • [18] G .Y. Si, J.Q. Shi, S. Durucan, A. Korre, J. Lazar, S. Jamnikar, S. Zavek, Monitoring and modelling of gas dynamics in multi-level longwall top coal carving of ultra-thick coal seams, part II: Numerical modelling-Science Direct [J].Int. J. Coal Geol. 144-145, 58-70 (2015). DOI: https://doi.org/10.1016/j.coal.2015.04.009.
  • [19] Z.F. Wang, W. Wu, Analysis on Major Borehole Sealing Methods of Mine Gas Drainage Boreholes [J]. Coal Sci.Technol. 42 (6), 31-34 (2014). DOI: https://doi.org/10.13199/j.cnki.cst.2014.06.006.
  • [20] T.X. Wen, X. Sun, X.B. Kong, H.B. Tian, Research on prediction of gas emission quantity with sub sources basingon PSOBP-Ada Boost [J]. China Saf. Sci. J 26 (5), 94-98(2016).DOI : https://doi.org/10.16265/j.cnki.issn1003-3033.2016.05.017.
  • [21] C.R. Wei, Y.X. Li, J.H. Sun, H.W. Mi, J. Li, Gas emission rate prediction in coal mine by grey and separated resources prediction method [J]. J. Min. Saf. Eng. 30 (4), 628-632 (2013).
  • [22] Y.X. Chai, W. Zhou, Quantitative Analysis Method of Gas Source in the First Mining Face of Zhuji Coal MineBased on Carbon Isotope [J]. Saf. Coal Mines 50 (6), 176-180 (2019). DOI: CNKI:SUN:MKAQ.0.2019-06-044.
  • [23] Y. Wang, Analysis of Isotope Gas Characteristics and Research and Application of Measurement Technology for Extraction and Separation of Gas Sources [J]. Sci. Technol. Inno. 12, 54-55 (2020). DOI: CNKI:SUN:HLKX.0.2020-12-031.
  • [24] Q.F. Liao, Analysis on Upper Corner Gas Source in Huangling No. 2 Coal Mine. Shanxi Cok. Coal Min. Technol.43 (6), 43-45 (2019). DOI: https://doi.org/10.3969/j.issn.1672-0652.2019.06.013.
  • [25] Z.Q. Wan, Study on the application and occurrence characteristics of trace elements in Two Huai coal mine [D].Univ. Sci. Technol. China (2015).
  • [26] L.C. Zhu, J.X. Ma, Q.X. Song, W. Zhou, Application Study on Source Separation Predition of Gas in Xieqiao Mine [J]. Min. Const. Technol. 41 (04), 25-27 (2020). DOI: https://doi.org/10.19458/j.cnki.cn11-2456/td.2020.04.006.
  • [27] W. Zhou, Study on the sources of gas emissions in coal mining based on stable caxbon and hydrogen isotopes and multi-source linear algorithm [D]. Anhui Univ. Sci. Technol. (2021).DOI : https://doi.org/10.26918/d.cnki.ghngc.2021.000012.
  • [28] W. Zhou, S. Xue, Y. C. Han, C. Zheng, Application of stable carbon and hydrogen isotope technology in the determination of gas sources from limestone layers at Shuangliu mine, China [J]. J. Geophys. Eng. 18 (2), 282-290(2021). DOI: https://doi.org/10.1093/jge/gxab013.
  • [29] M. Schoell, Genetic characterization of natural gases [J]. Aapg. Bull. 67, 2225-2238 (1983).
  • [30] X.Z. Gao, Volume Evaluation of the Gas Mixed With other Gases Using Carbon Isotopis Compositions [J]. Acta Sedimentol. Sin. 2, 63-65 (1997). DOI: CNKI:SUN:CJXB.0.1997-02-012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d4e05af-99ba-47c8-ba9d-0c7cd6398d83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.