PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bidirectional DC–AC Converter-Based Communication Solution for Microgrid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The communication system of a microgrid can transfer the information of electricity price, power consumption and so on between users and the control centre. This capability is of great significance to improve the efficiency and sustainability of power facilities. In this paper, a bidirectional DC–AC converter topology is proposed to achieve the composite transmission of power and signals in microgrids. Since the transmitted signals are modulated by power switches of converters and integrated into the currents, the cost of signal couplers can be saved and the circuit structure can be simplified. In order to verify the feasibility of the proposed method, a simulation model of the proposed converter is implemented in MATLAB/Simulink. With the power supply frequency of 50 Hz, when the converter operates in the inverter mode and rectifier mode, the data transmission rate can reach 120 bit/s and 48 bit/s, respectively.
Wydawca
Rocznik
Strony
177--188
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Electronics, University of York, York, United Kingdom
autor
  • School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
autor
  • Dynex Semiconductor Ltd., Doddington Road, Lincoln, United Kingdom
autor
  • Department of Electronics, University of York, York, United Kingdom
Bibliografia
  • Chakraborty, S., Weiss, M. D. and Simoes, M. G. (2007). Distributed Intelligent Energy Management System for A Single-Phase High-Frequency AC Microgrid. IEEE Transactions on Industrial Electronics, 54(1), pp. 97–109.
  • Choi, H. J. and Jung, J. H. (2017). Enhanced Power Line Communication Strategy for DC Microgrids Using Switching Frequency Modulation of Power Converters. IEEE Transactions on Power Electronics, 32(6), pp. 4140–4144.
  • Costa, L. G. D. S., Picorone, A. A. M., de Queiroz, A. C. M., Costa, V. L. R. and Ribeiro, M. V. (2015). Projeto e caracterização de acopladores para power line communications. In: Proceedings of XXXIII Simpósio Brasileiro de Telecomunicações. Brazil, 2015.
  • Costa, L. G., de Queiroz, A. C. M., Adebisi, B., da Costa, V. L. R. and Ribeiro, M. V. (2017). Coupling for Power Line Communications: A Survey. Journal of Communication and Information Systems, 32(1).
  • Fang, X., Misra, S., Xue, G. and Yang, D. (2011). Smart Grid – The New and Improved Power Grid: A Survey. IEEE Communications Surveys & Tutorials, 14(4), pp. 944–980.
  • Ghorbanian, M., Dolatabadi, S. H., Masjedi, M. and Siano, P. (2019). Communication in Smart Grids: A Comprehensive Review on the Existing and Future Communication and Information Infrastructures. IEEE Systems Journal, 13(4), pp. 4001–4014.
  • Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C. and Hancke, G. P. (2011). Smart Grid Technologies: Communication Technologies and Standards. IEEE Transactions on Industrial Informatics, 7(4), pp. 529–539.
  • Hau, L. C., Lee, J. V., Chuah, Y. D. and Lai, A. C. (2013). Smart Grid-the Present and Future of Smart Physical Protection: A Review. International Journal of Energy, Information and Communications, 4(4), pp. 43–54.
  • Kabalci, Y. (2016). A Survey on Smart Metering and Smart Grid Communication. Renewable and Sustainable Energy Reviews, 57, pp. 302–318.
  • Lee, J. J., In, D. S., Oh, H. M., Shon, S. and Nam, D. H. (2010). Neutral Inductive Coupling for Improved Underground Medium Voltage BPLC. In: ISPLC2010. IEEE. March 2010.
  • Lo, C. H. and Ansari, N. (2011). The Progressive Smart Grid System from Both Power and Communications Aspects. IEEE Communications Surveys & Tutorials, 14(3), pp. 799–821.
  • Lu, Z., Lu, X., Wang, W. and Wang, C. (2010). Review and Evaluation of Security Threats on the Communication Networks in the Smart Grid. In: 2010-Milcom 2010 Military Communications Conference. IEEE. October 2010.
  • Mocanu, E., Nguyen, P. H., Kling, W. L. and Gibescu, M. (2016). Unsupervised Energy Prediction in a Smart Grid Context Using Reinforcement Cross-Building Transfer Learning. Energy and Buildings, 116, pp. 646–655.
  • Stefanutti, W., Mattavelli, P., Saggini, S. and Panseri, L. (2006). Communication on Power Lines Using Frequency and Duty-Cycle Modulation in Digitally Controlled DC-DC Converters. In: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. IEEE. November 2006.
  • Stefanutti, W., Saggini, S., Mattavelli, P. and Ghioni, M. (2008). Power Line Communication in Digitally Controlled DC–DC Converters Using Switching Frequency Modulation. IEEE Transactions on Industrial Electronics, 55(4), pp. 1509–1518.
  • Sun, Q., Ge, X., Liu, L., Xu, X., Zhang, Y., Niu, R. and Zeng, Y. (2011). Review of Smart Grid Comprehensive Assessment Systems. Energy Procedia, 12, pp. 219–229.
  • Swana, Z. W., van Rensburg, P. A. J. and Ferreira, H. C. (2015). Is Resistive Coupling Feasible for the Reception of Power-Line Communications Data? In: 2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC). IEEE. March 2015.
  • Tripathi, K., Shrivastava, S. and Banarjee, S. (2020). Review in Recent Trends on Energy Delivery System and Its Issues in Smart Grid System. In: Computing Algorithms with Applications in Engineering. Springer, pp. 117–125.
  • Wang, R., Lin, Z., Du, J., Wu, J. and He, X. (2016). Direct Sequence Spread Spectrum-Based PWM Strategy for Harmonic Reduction and Communication. IEEE Transactions on Power Electronics, 32(6), pp. 4455–4465.
  • Wang, W., Xu, Y. and Khanna, M. (2011). A Survey on the Communication Architectures in Smart Grid. Computer Networks, 55(15), pp. 3604–3629.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d493b8c-ebbf-4cf6-a82f-c58e34e92b0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.