PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermomechanical interactions due to laser pulse in microstretch thermoelastic medium

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present investigation deals with deformation in microstretch generalized thermoelastic medium subjected to thermomechanical loading induced by thermal laser pulse. The Laplace and Fourier transform techniques are used to solve the problem, and concentrated normal force and thermal source describe the application of this approach. The closed form expressions of normal stress, tangential stress, couple stress, microstress and temperature distribution are obtained for the transferred domain. The numerical inversion technique of Laplace transform and Fourier transform has been applied to obtain the resulting quantities in the physical domain after developing a computer program. Normal stress, tangential stress, coupled stress and microstress temperature distribution are depicted graphically to show the microstretch effect. Some particular and special cases of interest are gathered and presented in the investigation.
Rocznik
Strony
439--456
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Mathematics Kurukshetra University Kurukshetra Haryana, India
autor
  • Department of Mathematics Punjab Technical University Jalandhar, Punjab, India
autor
  • Guru Nanak Dev Engineering College Ludhiana, Punjab, India
Bibliografia
  • 1. A.C. Eringen, Linear theory of micropolar elasticity, Journal of Mathematics and Mechanics, 15, 909–923, 1966.
  • 2. A.C. Eringen, Micropolar elastic solids with stretch, Ari Kitabevi Matbassi, 24, 1–18, 1971.
  • 3. A.C. Eringen, Theory of thermomicrostretch elastic solids, International Journal of Engineering Science, 28, 12, 1291–1301, 1990.
  • 4. S.D. Cicco, Stress concentration effects in microstretch elastic bodies, International Journal of Engineering Sciences, 41, 187–199, 2003.
  • 5. M.A. Ezzat, E.S. Awad, Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures, Journal of Thermal Stresses, 33, 3, 226–250, 2010.
  • 6. R. Kumar, T. Kansal, Fundamental solution in the theory of thermomicrostretch elastic diffusive solids, ISRN Applied Mathematics, volume 2011, Article ID 764632, 2011.
  • 7. M. Marin, A domain of influence theorem for microstretch elastic materials, Nonlinear Analysis: Real World Applications, 11, 3446–3452, 2010.
  • 8. M. Aouadi, Thermomechanical interactions in a generalized thermomicrostretch elastic half space, Journal of Thermal Stresses, 29, 511–528, 2006.
  • 9. M.I.A. Othman, S.Y. Atwa, A. Jahangir, A. Khan, Gravitational effect on plane waves in generalized thermo-microstretchelastic solid under Green–Naghdi theory, Appl. Math. Inf. Sci. Lett. 1, 2, 25–38, 2013.
  • 10. D. Trajkovski, R. Cukic, A coupled problem of thermoelastic vibrations of a circular plate with exact boundary conditions, Mech. Res. Commun., 26, 217–24, 1999.
  • 11. X. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating, Appl. Phys. A, 73, 107–14, 2001.
  • 12. X. Wang, X. Xu, Thermoelastic wave in metal induced by ultrafast laser pulses, J. Thermal Stresses, 25, 457–73, 2002.
  • 13. D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys., 61, 41–73, 1989.
  • 14. M.N. Ozisik, D.Y. Tzou, On the wave theory in heat-conduction, ASME J. Heat Transfer, 116, 526–535, 1994.
  • 15. W.S. Kim, L.G. Hector, M.N. Ozisik, Hyperbolic heat conduction due to axisymmetric continuous or pulsed surface heat sources, J Appl. Phys., 68, 5478–85, 1990.
  • 16. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals, ASME J. Heat Transfer, 115, 835–41, 1993.
  • 17. D.Y. Tzou, Macro to Micro Scale Heat Transfer: The Lagging Behavior, Bristol, Taylor & Francis, 1997.
  • 18. J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, J. Lu, Simulation on thermoelastic stress field and laser ultrasound wave form in non-metallic materials by using FEM, Applied Physics A, 84, 301–307, 2006.
  • 19. C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications, Adam Hilger, Bristol, UK, 1990.
  • 20. L.R.F. Rose, Point-source representation for laser-generated ultrasound, Journal of the Acoustical Society of America, 75, 3, 723, 1984.
  • 21. F.A. McDonald, On the precursor in laser-generated ultrasound waveforms in metals, Applied Physics Letters, 56, 3, 230–232, 1990.
  • 22. J.B. Spicer, A.D.W. Mckie, J.W. Wagner, Quantitative theory for laser ultrasonic waves in a thin plate, Appl. Phys. Lett., 57, 1882–1884, 1990.
  • 23. M. Dubois, F. Enguehard, L. Bertrand, M. Choquet, J.P. Monchalin, Appl. Phys. Lett., 64, 554, 1994.
  • 24. M.A. Ezzat, A. Karamany, M.A. Fayik, Fractional ultrafast laser-induced thermoelastic behavior in metal films, Journal of Thermal Stresses, 35, 637–651, 2012.
  • 25. N.S. Al-Huniti , M.A. Al-Nimr, Thermoelastic behavior of a composite slab under a rapid dual-phase-lag heating, Journal of Thermal Stresses, 27, 607–623, 2004.
  • 26. J.K. Chen, J.E. Beraun, C.L. Tham, Comparison of one-dimensional and two-dimensional axisymmetric approaches to the thermomechanical response caused by ultra-short laser heating, Journal of Optics, 4, 650–661, 2002.
  • 27. W.S. Kim, L.G. Hector, R.B. Hetnarski, Thermoelastic stresses in a bonded layer due to repetitively pulsed laser heating, Acta Mechanica, 125, 107–128, 1997.
  • 28. H.M. Youssef, A.A. El-Bary, Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity, Journal of Thermal Stresses, 37, 1379–1389, 2014.
  • 29. L. Yuan, K. Sun, Z. Shen, X. Ni, J. Lu, Theoretical study of the effect of enamel parameters on laser induced surface acoustic waves in human incisor, Int. J. Thermophys., July 2014.
  • 30. M.A. Elhagary, A two-dimensional generalized thermoelastic diffusion problem for a thick plate subjected to thermal loading due to laser pulse, Journal of Thermal Stresses, 37, 1416–1432, 2014.
  • 31. A.C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer, New York 1999.
  • 32. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solid, 15, 299–306, 1967.
  • 33. A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity, 2, 1–5, 1972.
  • 34. A.C. Eringen, Plane waves in non-local micropolar elasticity, Int. J. Eng. Sci., 22, 1113–1121, 1984.
  • 35. R. Kumar, L. Rani, Elastodynamic response of mechanical and thermal source in generalized thermoelastic half space with voids, Mechanics and Mechanical Engineering, 9, 2, 29–45, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d46ae27-2003-42d2-a84d-b2c48d9abe1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.