
5JAISCR, 2018, Vol. 8, No. 1, pp.

SELF-ASSIMILATION FOR SOLVING EXCESSIVE
INFORMATION ACQUISITION IN POTENTIAL

LEARNING

Ryotaro Kamimura1 and Tsubasa Kitago2

1IT Education Center, Tokai University
4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

Email: ryo@keyaki.cc.u-tokai.ac.jp

2Department of Politics and Economics, Tokai University
4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

Submitted: 31st March 2017; accepted: 19th April 2017

Abstract

The present paper aims to propose a new computational method for potential learning to
improve generalization and interpretation. Potential learning has been proposed to sim-
plify the computational procedures of information maximization and to specify which
neurons should be fired. However, it is often the case that potential learning sometimes
absorbs too much information content on input patterns in the early stage of learning,
which tends to degrade generalization performance. This can be solved by making po-
tential learning as slow as possible. Accordingly, we here propose a procedure called
“self-assimilation” in which connection weights are accentuated by their characteristics
observed in the specific learning step. This makes it possible to predict future connection
weights in the early stage of learning. Thus, it is possible to improve generalization by
slow learning and at the same time to improve the interpretation of connection weights
via the enhanced characteristics of the connection weights. The method was applied to
an artificial data set, as well as a real data set of counter services at a local government
office in the Tokyo metropolitan area. The results show that improved generalization
was observed by making learning as slow as possible. In addition, the number of strong
connection weights became smaller for better interpretation by self-assimilation.
Keywords: neural networks, learning, excessive information acquisition, self-assimilation
method

1 Introduction

1.1 Problems of Information-Theoretic
Methods

Information-theoretic methods have played impor-
tant roles in neural information where information
content on input patterns is maximized or mini-
mized, depending on the specific problem, [1, 2,
3, 4, 5, 6, 7, 8, 9, 10]. In these methods, there

has been persistent difficulty in computing infor-
mation content in terms of entropy or mutual in-
formation. Thus, there have been many attempts
to reduce computational complexity by supposing
that neurons are distributed independently or uni-
formly [11, 12, 13]. However, they have not nec-
essarily been successful in simplifying the compu-
tational procedures. In addition, there is another
problem, namely, the information-theoretic method
cannot specify which neurons should be fired. For

 10.1515/jaiscr-2018-0001
 – 29

6 Ryotaro Kamimura and Tsubasa Kitago

example, in a state of maximum information, one
neuron fires while all others cease to do so. To max-
imize information we should choose which neuron
is fired, but the criteria to do so remain uncertain.
Thus, in order for the information-theoretic meth-
ods to be used practically, the problem of complex
computation and uncertain specifications of fired
neurons must be solved.

1.2 Potential Learning

Potential learning has been previously proposed to
simplify computational procedures and to specify
which neuron is fired in information maximization
[14, 15, 16, 17]. When the information content of
neurons is supposed to be maximized, then just one
neuron should fire, while all the others cease to do
so. In potential learning, this neuron should have
maximum potentiality and be fired maximally. The
potentiality of neurons represents the neurons’ abil-
ity to respond appropriately to as many different sit-
uations as possible. For the first approximation, the
potentiality has been defined as the variance of neu-
rons.

Potential learning has three strong points,
namely, simple computational procedures, specifi-
cation of which neuron to fire, and independence of
operations. By supposing the potentiality of neu-
rons, it is possible to maximize mutual informa-
tion simply by changing the potential parameter;
no complex computational procedures are needed.
Second, the method can explicitly determine which
neuron is to be fired. Because potential learning
aims to increase the potentiality of neurons, a neu-
ron to be fired should be one with higher potential-
ity. Third, potentiality maximization or information
maximization can be applied independently of er-
ror minimization. The potentiality is given in the
initial stage of learning, and learning is considered
to be a procedure to assimilate this potentiality into
connection weights. Thus, there is no complex pa-
rameter control to compromise between potential-
ity maximization and error minimization as usefully
done in the conventional methods. Thus, potential
learning can simplify the computational procedures
and at the same time extract the meaning of fired
neurons.

1.3 Self-Assimilation for Excessive Infor-
mation

Potential learning has been proved to be useful in
improving the generalization and interpretation of
neural networks. However, there is a problem called
“excessive information acquisition”, which occurs
when potential learning tends to absorb too much
information on input patterns even in the early stage
of learning steps. In particular, when the problems
become more complex and practical, this tendency
became clearer. Since information maximization
corresponds to a decrease in the number of neurons
to be used in learning, it becomes easier to interpret
the behaviors of neurons in a state with excessive
information content. However, excessive informa-
tion or excessive simplification has unfavorable ef-
fects on generalization performance. This means
that the excessive information acquisition naturally
degrades generalization performance. One solution
for this problem is to make learning as slow as pos-
sible to prevent neural networks from acquiring too
much information content. Because of this slow
learning, potential learning requires a large number
of learning steps to improve generalization perfor-
mance,

To overcome this excessive information ac-
quisition problem, we here propose a procedure
called “self-assimilation”, where the characteristics
of connection weights are forced to be accentuated
by assimilating the characteristics of the weights
themselves. Because the characteristics of connec-
tion weights become gradually clearer when the in-
formation content becomes higher, this accentua-
tion of connection weights is able to predict the fu-
ture characteristics of connection weights from their
present state. The self-assimilation aims to extract
the main features of connection weights in stages
with low information content, where neurons do not
necessarily respond to input patterns explicitly. In
other words, we try to infer the main characteris-
tic of connection weights even in the early stages
of learning. By this method, it is possible that the
learning can proceed as slowly as possible to im-
prove generalization, while the main features can
be detected in the early stage of learning.

7Ryotaro Kamimura and Tsubasa Kitago

example, in a state of maximum information, one
neuron fires while all others cease to do so. To max-
imize information we should choose which neuron
is fired, but the criteria to do so remain uncertain.
Thus, in order for the information-theoretic meth-
ods to be used practically, the problem of complex
computation and uncertain specifications of fired
neurons must be solved.

1.2 Potential Learning

Potential learning has been previously proposed to
simplify computational procedures and to specify
which neuron is fired in information maximization
[14, 15, 16, 17]. When the information content of
neurons is supposed to be maximized, then just one
neuron should fire, while all the others cease to do
so. In potential learning, this neuron should have
maximum potentiality and be fired maximally. The
potentiality of neurons represents the neurons’ abil-
ity to respond appropriately to as many different sit-
uations as possible. For the first approximation, the
potentiality has been defined as the variance of neu-
rons.

Potential learning has three strong points,
namely, simple computational procedures, specifi-
cation of which neuron to fire, and independence of
operations. By supposing the potentiality of neu-
rons, it is possible to maximize mutual informa-
tion simply by changing the potential parameter;
no complex computational procedures are needed.
Second, the method can explicitly determine which
neuron is to be fired. Because potential learning
aims to increase the potentiality of neurons, a neu-
ron to be fired should be one with higher potential-
ity. Third, potentiality maximization or information
maximization can be applied independently of er-
ror minimization. The potentiality is given in the
initial stage of learning, and learning is considered
to be a procedure to assimilate this potentiality into
connection weights. Thus, there is no complex pa-
rameter control to compromise between potential-
ity maximization and error minimization as usefully
done in the conventional methods. Thus, potential
learning can simplify the computational procedures
and at the same time extract the meaning of fired
neurons.

1.3 Self-Assimilation for Excessive Infor-
mation

Potential learning has been proved to be useful in
improving the generalization and interpretation of
neural networks. However, there is a problem called
“excessive information acquisition”, which occurs
when potential learning tends to absorb too much
information on input patterns even in the early stage
of learning steps. In particular, when the problems
become more complex and practical, this tendency
became clearer. Since information maximization
corresponds to a decrease in the number of neurons
to be used in learning, it becomes easier to interpret
the behaviors of neurons in a state with excessive
information content. However, excessive informa-
tion or excessive simplification has unfavorable ef-
fects on generalization performance. This means
that the excessive information acquisition naturally
degrades generalization performance. One solution
for this problem is to make learning as slow as pos-
sible to prevent neural networks from acquiring too
much information content. Because of this slow
learning, potential learning requires a large number
of learning steps to improve generalization perfor-
mance,

To overcome this excessive information ac-
quisition problem, we here propose a procedure
called “self-assimilation”, where the characteristics
of connection weights are forced to be accentuated
by assimilating the characteristics of the weights
themselves. Because the characteristics of connec-
tion weights become gradually clearer when the in-
formation content becomes higher, this accentua-
tion of connection weights is able to predict the fu-
ture characteristics of connection weights from their
present state. The self-assimilation aims to extract
the main features of connection weights in stages
with low information content, where neurons do not
necessarily respond to input patterns explicitly. In
other words, we try to infer the main characteris-
tic of connection weights even in the early stages
of learning. By this method, it is possible that the
learning can proceed as slowly as possible to im-
prove generalization, while the main features can
be detected in the early stage of learning.

SELF-ASSIMILATION FOR . . .

1.4 Paper Organization

In Section 2, we briefly explain the concept of po-
tentiality assimilation and self-assimilation. We
then explain the computational procedures for po-
tential learning and self-assimilation, and introduce
self-assimilated connection weights and mutual in-
formation. In addition, we explain how to interpret
connection weights obtained by different data sets
and initial conditions, which is called “collective in-
terpretation”. We provide the computational proce-
dures for assimilating potentiality. In Section 3, we
present two experimental results on an artificial data
set and on a real data set on the counter services of
a local government office in the Tokyo metropolitan
area. The experimental results show that general-
ization was improved by slow learning and smaller
parameter values, and that self-assimilation led to
the detection of clear characteristics of connection
weights, even in the early stages of learning. For the
real data set, the final results by our method suggest
that the configuration of the counters is the main
reason behind stopping the processes of the counter
services.

2 Theory and Computational
Methods

2.1 Potentiality Assimilation and Self-
Assimilation

2.1.1 Potential Learning for Interpretation

Information maximization methods have long been
used to interpret final representations by simplify-
ing network configurations [18, 19, 20]. In this
case, the information content can be stored in a
small number of neurons and connection weights.
As mentioned in the introduction section, the infor-
mation maximization methods require heavy com-
putation to compute the entropy and corresponding
information content. To address this issue, we have
previously introduced potential learning to simplify
the computational procedures [14, 15, 16, 17]. In
maximum information states, only one neuron fires
while all others cease to do so. Thus, one of the pos-
sible ways to realize this situation is to optimally
determine which neuron should be fired. Poten-
tial learning aims to do precisely this by identifying
the neuron with maximum potentiality. In previ-
ous studies, potentiality has been defined in terms

of variance. Thus, the neuron to be fired should
have maximum variance. This potentiality is as-
similated in connection weights as initial conditions
as shown in Figure 1. As shown in Figure 1(a),
in the first step of potential learning, a neural net-
work is first trained to determine the estimated po-
tentiality of neurons. In the second step in Figure
1(b), this potentiality is assimilated into connection
weights. These steps continue along their predeter-
mined course. As shown in Figure 1(c), in the final
step, the potentiality of a hidden neuron becomes
the largest and all the other neurons tend to be much
smaller.

As shown in Figure 1, let wt
jk denote connection

weights from the kth input neuron to the jth hidden
neuron for the tth data set. Then, the potentiality is

tv j =
1

L−1

L

∑
k=1

(tw jk − tw j
)2
, (1)

where L is the number of input neurons, and

tw j =
1
L

L

∑
k=1

tw jk. (2)

The potentiality is normalized as

p(j|t) =
tv j

∑M
m=1

tvm
, (3)

where M is the number of hidden neurons. Then,
the potential information is

PI =
T

∑
t=1

p(t)
M

∑
j=1

p(j|t) log
p(j|t)
p(j)

, (4)

where T is the number of input patterns and p(j)
denotes the average firing probability for the jth
hidden neuron

p(j) =
1
T

T

∑
t=1

p(j|t). (5)

The potential information can be increased by
assimilating the relative potentiality

tϕr
j =

(tv j
tvmax

)r

, (6)

where vmax is the maximum potentiality and r
denotes the potential parameter, having positive
values. The first step uses the ordinary back-
propagation with the early stopping as shown in
Figure 1(a) to determine the potentiality of connec-
tion weights. Then, in the second step in Figure

8 Ryotaro Kamimura and Tsubasa Kitago

1(b), initial weights are added to the potentiality
computed in the first step. To obtain the weights of
the n+1th step, we must add the potentiality com-
puted in the nth step

tw jk(n+1) = tw jk
tϕr

j(n). (7)

Then, learning is performed until the early stopping
criterion is met. By increasing the parameter r, the
potential information can be increased gradually.

2.1.2 Self-Assimilation for Enhancement

Self-assimilation is a method to enhance the char-
acteristics of connection weights themselves. Fig-
ure 2 shows the process of potential learning and
self-assimilation. After first determining the poten-
tiality of neurons, potentiality assimilation is ap-
plied by changing the potential parameter in Fig-
ure 2(a). Then, the self-assimilation is applied to
enhance connection weights by changing the po-
tential parameter in Figure 2(b). As already men-
tioned, potential information tends to increase grad-
ually in learning. Self-assimilation tries to infer
what the states of connection weights will be in the
later stages of learning at an earlier point. Thus,
self-assimilation aims to predict future characteris-
tics by observing the characteristics of the present
stage.

Self-assimilation implies that connection
weights can be transformed, reflecting their char-
acteristics of potentiality. The self-assimilated po-
tentiality is

tvr
j =

1
L−1

L

∑
k=1

(twr
jk − twr

j
)2
. (8)

where
twr

j =
1
L

L

∑
k=1

twr
jk. (9)

The potentiality is normalized as

pr(j|t) =
tvr

j

∑M
m=1

tvr
m
. (10)

Then, we have self-assimilated mutual information

PIr =
T

∑
t=1

M

∑
j=1

p(t)pr(j|t) log
pr(j|t)
pr(j)

. (11)

Finally, we note difference between simple po-
tential learning and self-assimilation. In simple po-
tential learning, the potentiality is forced to be as-
similated into connection weights by repeating the

processes of assimilation. On the other hand, in
self-assimilation, weights are not updated; rather,
only the parameter r is changed to control the po-
tentiality in Figure 2(b). First, the parameter r
is chosen so as to improve generalization perfor-
mance. After learning is complete, connection
weights are transformed by the relative potential-
ity computed from the connection weights them-
selves. This transformational operation has the ef-
fect of predicting the future characteristics of con-
nection weights. Thus, at the very early stages of
learning, we can predict the final or future charac-
teristics of connection weights.

2.1.3 Collective Interpretation

The neural networks tend to produce a variety
of connection weights, depending on input pat-
terns and initial conditions; we thus need to de-
velop a method to interpret them all. Usually, the
production of many different kinds of connection
weights has been considered to be one of the main
shortcomings of neural networks, compared with
conventional statistical methods such as regression
analysis. However, we consider the production of
many weights to be one of the main strengths of
neural networks, if those weights can be interpreted
collectively.

This means that we try to produce many differ-
ent kinds of connection weights in Figure 3. The
main characteristics of these connection weights
can be inferred from their average. In other words,
we consider main characteristics to be those com-
mon to many different types of connection weights.
Thus, we should develop a method to interpret the
collective behaviors of connection weights: a new
method of interpretation and a new way of visualize
the final results from neural networks. The collec-
tive interpretation is robust to small changes in data
sets and initial conditions. Thus, the method can
stabilize the final interpretation of results, which
has been a serious problem with neural networks.

Let twr
jk and twr

i j denote input-hidden and
hidden-output connection weights, then the average
weights called “collective weights” are computed
by

w̄r
ik =

1
T M

T

∑
t=1

M

∑
j=1

twr
jk sign(tW r

i j), (12)

where sign(Wi j)denotes the sign of hidden output

9Ryotaro Kamimura and Tsubasa Kitago

1(b), initial weights are added to the potentiality
computed in the first step. To obtain the weights of
the n+1th step, we must add the potentiality com-
puted in the nth step

tw jk(n+1) = tw jk
tϕr

j(n). (7)

Then, learning is performed until the early stopping
criterion is met. By increasing the parameter r, the
potential information can be increased gradually.

2.1.2 Self-Assimilation for Enhancement

Self-assimilation is a method to enhance the char-
acteristics of connection weights themselves. Fig-
ure 2 shows the process of potential learning and
self-assimilation. After first determining the poten-
tiality of neurons, potentiality assimilation is ap-
plied by changing the potential parameter in Fig-
ure 2(a). Then, the self-assimilation is applied to
enhance connection weights by changing the po-
tential parameter in Figure 2(b). As already men-
tioned, potential information tends to increase grad-
ually in learning. Self-assimilation tries to infer
what the states of connection weights will be in the
later stages of learning at an earlier point. Thus,
self-assimilation aims to predict future characteris-
tics by observing the characteristics of the present
stage.

Self-assimilation implies that connection
weights can be transformed, reflecting their char-
acteristics of potentiality. The self-assimilated po-
tentiality is

tvr
j =

1
L−1

L

∑
k=1

(twr
jk − twr

j
)2
. (8)

where
twr

j =
1
L

L

∑
k=1

twr
jk. (9)

The potentiality is normalized as

pr(j|t) =
tvr

j

∑M
m=1

tvr
m
. (10)

Then, we have self-assimilated mutual information

PIr =
T

∑
t=1

M

∑
j=1

p(t)pr(j|t) log
pr(j|t)
pr(j)

. (11)

Finally, we note difference between simple po-
tential learning and self-assimilation. In simple po-
tential learning, the potentiality is forced to be as-
similated into connection weights by repeating the

processes of assimilation. On the other hand, in
self-assimilation, weights are not updated; rather,
only the parameter r is changed to control the po-
tentiality in Figure 2(b). First, the parameter r
is chosen so as to improve generalization perfor-
mance. After learning is complete, connection
weights are transformed by the relative potential-
ity computed from the connection weights them-
selves. This transformational operation has the ef-
fect of predicting the future characteristics of con-
nection weights. Thus, at the very early stages of
learning, we can predict the final or future charac-
teristics of connection weights.

2.1.3 Collective Interpretation

The neural networks tend to produce a variety
of connection weights, depending on input pat-
terns and initial conditions; we thus need to de-
velop a method to interpret them all. Usually, the
production of many different kinds of connection
weights has been considered to be one of the main
shortcomings of neural networks, compared with
conventional statistical methods such as regression
analysis. However, we consider the production of
many weights to be one of the main strengths of
neural networks, if those weights can be interpreted
collectively.

This means that we try to produce many differ-
ent kinds of connection weights in Figure 3. The
main characteristics of these connection weights
can be inferred from their average. In other words,
we consider main characteristics to be those com-
mon to many different types of connection weights.
Thus, we should develop a method to interpret the
collective behaviors of connection weights: a new
method of interpretation and a new way of visualize
the final results from neural networks. The collec-
tive interpretation is robust to small changes in data
sets and initial conditions. Thus, the method can
stabilize the final interpretation of results, which
has been a serious problem with neural networks.

Let twr
jk and twr

i j denote input-hidden and
hidden-output connection weights, then the average
weights called “collective weights” are computed
by

w̄r
ik =

1
T M

T

∑
t=1

M

∑
j=1

twr
jk sign(tW r

i j), (12)

where sign(Wi j)denotes the sign of hidden output

SELF-ASSIMILATION FOR . . .

wL M

(a1) Initial state (a2) Final state

(a) 1st step

(b) 2nd step

(b) Potential determination

N

jk

ij

t

t

W

wL M

(a1) Initial state (a2) Final state
(b) Potential assimilation

N

jk

ij

t

t

W

(c) Final step

wL M

(a1) Initial state (a2) Final state
(b) Potential assimilation

N

jk

ij

t

t

W

Figure 1. Potential learning with potentiality determination and assimilation

10 Ryotaro Kamimura and Tsubasa Kitago

wL M

(a1) Initial state (a2) Final state

(a) Potentiality assimilation

(b) Self-assimilation

(b1) Self-assimilated state

(b2) Self-assimilated state

N

jk

ij

t

t

W

Figure 2. Potentiality assimilation and self-assimilation

r

(a)

(c) Self-assimilated state

(b) Self-assimilated state

(d) Self-assimilated state

2

Data

Initial

conditions

(e) Collective

 interpretation

Figure 3. Collective production and interpretation

11Ryotaro Kamimura and Tsubasa Kitago

wL M

(a1) Initial state (a2) Final state

(a) Potentiality assimilation

(b) Self-assimilation

(b1) Self-assimilated state

(b2) Self-assimilated state

N

jk

ij

t

t

W

Figure 2. Potentiality assimilation and self-assimilation

r

(a)

(c) Self-assimilated state

(b) Self-assimilated state

(d) Self-assimilated state

2

Data

Initial

conditions

(e) Collective

 interpretation

Figure 3. Collective production and interpretation

SELF-ASSIMILATION FOR . . .

connection weights into the ith output neuron. By
the collective weight, we try to see the main char-
acteristics of connection weights by averaging all
weights for different input patterns, weighted by the
sings of hidden-output connection weights.

3 Results and Discussion

3.1 Artificial Data

3.1.1 Experimental Outline

The first experiment aims to show that the new
method could improve generalization performance
by detecting the importance of input neurons (vari-
ables). In the experiment, the artificial data set was
composed of two sets of random values in Figure
4(a). The problem was to classify the data set into
two classes. As shown in Figure 4(a), the variable
x1 was more important in the classification, and that
methods should be able to detect this difference.
The number of input patterns was 2,000 and the
data set was divided into the training (70%), vali-
dation (15%) and testing (15%); ten different data
sets were taken. Figure 4(b) shows the network ar-
chitecture where two input, ten hidden and two out-
put neurons were used. All the parameter values
for learning were default ones in Matlab neural net-
works for easily reproducing the present results.

3.1.2 Potential Information Maximization

The potential information increased gradually and
became close to 0.9 as the parameter increased.
Figure 5 shows potential information and its corre-
sponding generalization errors. As shown in Figure
5(a), when the parameter r increased, the potential
information increased gradually. When the param-
eter r was 0.01, the potential information did not
increase even when the number of steps increased.
When the parameter r was increased to 0.1, the
information increased slightly. When the parame-
ter r was 1, the information became close to 0.9
with seven steps. When the parameter r was in-
creased to ten, the information shifted between 0.8
and 0.9 and then increased slowly and surpassed
0.9. These results show that when the parameter
r was increased from one to ten, the potential infor-
mation was forced to increase rapidly.

As shown in Figure 5(b), generalization errors
decreased when the number of steps increased. In

particular, when the parameter r was 0.1, the low-
est generalization errors were obtained. When the
parameter r was 0.01, the generalization errors de-
ceased very steadily, though the generalization er-
rors were rather large. When the parameter was
0.1, the generalization errors decreased to the low-
est point with seven steps. When the parameter r
was further increased to one, the generalization er-
rors deceased with seven steps, and then inversely
increased. When the parameter r was 10, the gen-
eralization errors deceased greatly with two steps
and then later fluctuated. These results show that
too much information with higher parameter values
prevented neural networks from improving general-
ization performance.

Figure 6 shows connection weights by four dif-
ferent parameter values for the artificial data set.
When the parameter r was 0.01 in Figure 6(a), many
strong positive and negative weights could be seen,
even when the number of steps was increased from
one in Figure6(a1) to ten in Figure 6(a5). When
the parameter was 0.1, connection weights from the
second input neuron became slightly weaker. When
the parameter r increased to one in Figure 6(c) and
ten in Figure 6(d), only connection weights to the
tenth hidden neurons remained strong, while all the
others became almost zero. When the parameter r
increased gradually, the number of stronger connec-
tion weights became smaller. Finally, only connec-
tion weights into the tenth hidden neurons remained
strong. These results show that when the parameter
r increased and correspondingly the potential infor-
mation increased, the number of strong connection
weights became smaller.

3.1.3 Self-Assimilated Information and Gener-
alization

The self-assimilated information was computed by
keeping the parameter at 0.1. Since the best gen-
eralization error was obtained with r=0.1, the pa-
rameter r was only changed in the self-assimilation
without actual training. Results showed that infor-
mation could be increased through self-assimilation
while keeping generalization errors small. Figure
7 shows the self-assimilated potential information
(a) and generalization (b) for four different param-
eter values. When the parameter values were 0.01
and 0.1, the self-assimilated information increased
gradually and in the same direction. When the pa-

12 Ryotaro Kamimura and Tsubasa Kitago

Figure 4. Artificial data (a) and network architecture (b)

rameter was 1, the information increased and be-
came larger than 0.6. When the parameter r was
ten, the self-assimilated information became close
to 0.9. On the other hand, the generalization errors
were the same as those in Figure 5(b) because the
parameter r was actually 0.1 in Figure 7(b).

Figure 8 shows connection weights when the
parameter r increased from 0.01 (a) to 10 (d).
The number of stronger connection weights be-
came smaller when the parameter r increased. Fi-
nally, when the parameter r was ten, connection
weights into the tenth hidden neuron remained
strong. These results show that the self-assimilated
information maximization could produce connec-
tion weights close to the ones obtained by actually
changing the parameter r without learning in Fig-
ure 6.

3.1.4 Collective Interpretation

When the parameter r increased, the number of
strong connection weights became smaller and the
same type of connection weights were obtained.
Figure 9 shows the self-assimilated connection
weights by two parameter values (0.1 and 10) and
ten different data sets. As shown in the figures,
the strongest connection weights for r=0.1 remained
strong for r=10. Even with different data sets
and initial conditions, the same type of connection
weights could be produced in the end. Thus, it was

possible to average the connection weights to exam-
ine the characteristics of connection weights.

Figure 10 shows the average self-assimilated
connection weights with three different parameter
values and by the logistic analysis for the artificial
data set. As can be seen in the fugues, the aver-
age connection weights from the first input neuron
were stronger than those from the second input neu-
ron. When the parameter r was 0.1 in Figure 10(a)
and 1 in Figure 10(b), the average weights from the
first input neuron were much larger than the weights
from the second input neuron, but they were neg-
ative. When the parameter r was 10, in Figure
10(c), the average weights from the second neu-
ron became positive. Thus, the connection weights
were close to the regression coefficients by the re-
gression analysis in Figure 10(d). As will be ex-
plained later, the generalization error produced by
the present method was smaller than that by the
regression analysis. In other words, the present
method could produce better generalization perfor-
mance while maintaining the importance of input
variables.

3.1.5 Generalization Comparison

The new method could produce the lowest gener-
alization errors with higher potential information
as shown in Table 1. When the parameter r was
0.01, the potential information was relatively low,

13Ryotaro Kamimura and Tsubasa Kitago

Figure 4. Artificial data (a) and network architecture (b)

rameter was 1, the information increased and be-
came larger than 0.6. When the parameter r was
ten, the self-assimilated information became close
to 0.9. On the other hand, the generalization errors
were the same as those in Figure 5(b) because the
parameter r was actually 0.1 in Figure 7(b).

Figure 8 shows connection weights when the
parameter r increased from 0.01 (a) to 10 (d).
The number of stronger connection weights be-
came smaller when the parameter r increased. Fi-
nally, when the parameter r was ten, connection
weights into the tenth hidden neuron remained
strong. These results show that the self-assimilated
information maximization could produce connec-
tion weights close to the ones obtained by actually
changing the parameter r without learning in Fig-
ure 6.

3.1.4 Collective Interpretation

When the parameter r increased, the number of
strong connection weights became smaller and the
same type of connection weights were obtained.
Figure 9 shows the self-assimilated connection
weights by two parameter values (0.1 and 10) and
ten different data sets. As shown in the figures,
the strongest connection weights for r=0.1 remained
strong for r=10. Even with different data sets
and initial conditions, the same type of connection
weights could be produced in the end. Thus, it was

possible to average the connection weights to exam-
ine the characteristics of connection weights.

Figure 10 shows the average self-assimilated
connection weights with three different parameter
values and by the logistic analysis for the artificial
data set. As can be seen in the fugues, the aver-
age connection weights from the first input neuron
were stronger than those from the second input neu-
ron. When the parameter r was 0.1 in Figure 10(a)
and 1 in Figure 10(b), the average weights from the
first input neuron were much larger than the weights
from the second input neuron, but they were neg-
ative. When the parameter r was 10, in Figure
10(c), the average weights from the second neu-
ron became positive. Thus, the connection weights
were close to the regression coefficients by the re-
gression analysis in Figure 10(d). As will be ex-
plained later, the generalization error produced by
the present method was smaller than that by the
regression analysis. In other words, the present
method could produce better generalization perfor-
mance while maintaining the importance of input
variables.

3.1.5 Generalization Comparison

The new method could produce the lowest gener-
alization errors with higher potential information
as shown in Table 1. When the parameter r was
0.01, the potential information was relatively low,

SELF-ASSIMILATION FOR . . .

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

G
e
n
e
ra

li
z
a
ti

o
n
 e

rr
o
r

1 2 3 4 5 6 7 8 9 10
0.019

0.0195

0.02

0.0205

0.021

Number of steps

G
e
n
e
ra

li
z
a
ti

o
n
 e

rr
o
r

(a) Potential information

(b) Generalization errors

(a) 0.01

(a) 0.01

(b) 0.1

(b) 0.1

(c) 1

(c) 1

(d) 10

(d) 10

Figure 5. Potential information (a) and generalization errors (b) for the artificial data

14 Ryotaro Kamimura and Tsubasa Kitago

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 3 (b2) 3 (c2) 3 (d2) 3

(a3) 5 (b3) 5 (c3) 5 (d3) 5

(a4) 7 (b4) 7 (c4) 7 (d4) 7

(a) 0.01 (b) 0.1 (c) 1 (d) 10

(a5) 10 (b5) 10 (c5) 10 (d5) 10

Figure 6. Connection weights by four different parameter values for the artificial data

15Ryotaro Kamimura and Tsubasa Kitago

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

1 2

2

4

6

8

10

Input

H
id

d
en

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 3 (b2) 3 (c2) 3 (d2) 3

(a3) 5 (b3) 5 (c3) 5 (d3) 5

(a4) 7 (b4) 7 (c4) 7 (d4) 7

(a) 0.01 (b) 0.1 (c) 1 (d) 10

(a5) 10 (b5) 10 (c5) 10 (d5) 10

Figure 6. Connection weights by four different parameter values for the artificial data

SELF-ASSIMILATION FOR . . .

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

In
fo

rm
a
ti

o
n

2 4 6 8 10
0.019

0.0195

0.02

0.0205

0.021

Number of steps

G
e
n

e
ra

li
z
a
ti

o
n

 e
rr

o
r

(a) Potential information

(b) Generalization errors

(a) 0.01

(b) 0.1

(c) 1

(d) 10

Figure 7. Self-assimilated potential information (a) and generalization errors (b) by four different
parameter values for the artificial data

16 Ryotaro Kamimura and Tsubasa Kitago

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 3 (b2) 3 (c2) 3 (d2) 3

(a3) 5 (b3) 5 (c3) 5 (d3) 5

(a4) 7 (b4) 7 (c4) 7 (d4) 7

(a) 0.01 (b) 0.1 (c) 1 (d) 10
(a5) 10 (b5) 10 (c5) 10 (d5) 10

Figure 8. Self-assimilated connection weights by four different parameter values for the artificial data

17Ryotaro Kamimura and Tsubasa Kitago

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

1 2

2

4

6

8

10

Input

H
id

d
e
n

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 3 (b2) 3 (c2) 3 (d2) 3

(a3) 5 (b3) 5 (c3) 5 (d3) 5

(a4) 7 (b4) 7 (c4) 7 (d4) 7

(a) 0.01 (b) 0.1 (c) 1 (d) 10
(a5) 10 (b5) 10 (c5) 10 (d5) 10

Figure 8. Self-assimilated connection weights by four different parameter values for the artificial data

SELF-ASSIMILATION FOR . . .

Figure 9. Self-assimilated connection weights by two different parameter values and by ten different initial
conditions and different data sets for the artificial data

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d
d
e
n

1 2

2

4

6

8

10

Input

H
i
d
d
e
n

1 2

2

4

6

8

10

Input

H
i
d
d
e
n

1 2

2

4

6

8

10

Input

H
i
d
d
e
n

1 2

2

4

6

8

10

Input

H
i
d
d
e
n

(a1) 1 (b1) 1 (a6) 6 (b6) 6

(a2) 2 (b2) 2 (a7) 7 (b7) 7

(a3) 3 (b3)3 (a8) 8 (b8) 8

(a4) 4 (b4) 4 (a9) 9 (b9) 9

 (a) 0.1 (b) 10 (a) 0.1

(a5) 5 (b5) 5

(b) 10
(b10) 10(a10) 10

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

1 2

2

4

6

8

10

Input

H
i
d

d
e
n

Figure 9: Self-assimilated connection weights by two different parameter values and by ten different
initial conditions and different data sets for the artificial data.

values. However, compared with the values of 0.0211 (BP) and 0.0202 (Logistic regression), all values

were smaller. When self-assimilation was used, the actual parameter in learning was 0.1 and naturally the

best generalization error was obtained, as explained above. However, the potential information increased

from 0.3096 (r=0.01) to 0.8549(r=10). These results show that self-assimilation could increase potential

information while keeping the generalization error low. In other words, self-assimilation could increase

15

18 Ryotaro Kamimura and Tsubasa Kitago

1 2
2

0

2

4

6

8

10

1 2
2

1

0

1

2

3

4

5

6

7

1 2
0

0.5

1

1.5

2

1 2
0

5

10

15

20

25

30

InputInput

InputInput

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

(a) 0.1 (b) 1

(c) 10 (d) Logistic

Figure 10. Average self-assimilated connection weights by three different parameter values and
coefficients by the logistic analysis for the artificial data

namely, 0.1693. When the parameter r was in-
creased to 0.1, the potential information increased
from 0.1693 to 0.3059. The generalization er-
rors decreased from 0.0197 to the lowest value
of 0.0193. Then, when the parameter r was fur-
ther increased to 1 and 10, the potential informa-
tion was close to 0.9, and the generalization er-
rors increased slightly to 0.0199 and 0.0198. In
addition, when the parameter r was 0.1, the low-
est errors of 0.0193, 0.0180 and 0.0200 were ob-
tained in terms of average, minimum and maxi-
mum values. However, compared with the values
of 0.0211 (BP) and 0.0202 (Logistic regression),
all values were smaller. When self-assimilation
was used, the actual parameter in learning was
0.1 and naturally the best generalization error was
obtained, as explained above. However, the po-
tential information increased from 0.3096 (r=0.01)
to 0.8549(r=10). These results show that self-
assimilation could increase potential information
while keeping the generalization error low. In other
words, self-assimilation could increase information
without degrading generalization performance and
actual training.

3.2 Counter Services Data

3.2.1 Experimental Outline

This method was also applied to the data on the
counter services at a local government office in the
Tokyo metropolitan area, provided by the data anal-
ysis competition in 2015 organized by the manage-
ment sciences association1. The number of items
was 3,194, of which 1,000 were used exclusively
for optimizing neural networks. Of these 1,000
items, 70 percent was used for training neural net-
work, while the remaining 30 percent was used for
checking the learning. As shown in Figure 11, the
number of input, hidden and output neurons were 6,
10 and 2, respectively. The objective of the neural
networks was to infer whether the counter services
were being interrupted or not. We used Matlab neu-
ral networks toolbox with all default values for easy
reproduction of the present results.

1https://jasmac-j.jimdo.com/

19Ryotaro Kamimura and Tsubasa Kitago

1 2
2

0

2

4

6

8

10

1 2
2

1

0

1

2

3

4

5

6

7

1 2
0

0.5

1

1.5

2

1 2
0

5

10

15

20

25

30

InputInput

InputInput

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

A
v

e
ra

g
e
 s

tr
e
n

g
th

(a) 0.1 (b) 1

(c) 10 (d) Logistic

Figure 10. Average self-assimilated connection weights by three different parameter values and
coefficients by the logistic analysis for the artificial data

namely, 0.1693. When the parameter r was in-
creased to 0.1, the potential information increased
from 0.1693 to 0.3059. The generalization er-
rors decreased from 0.0197 to the lowest value
of 0.0193. Then, when the parameter r was fur-
ther increased to 1 and 10, the potential informa-
tion was close to 0.9, and the generalization er-
rors increased slightly to 0.0199 and 0.0198. In
addition, when the parameter r was 0.1, the low-
est errors of 0.0193, 0.0180 and 0.0200 were ob-
tained in terms of average, minimum and maxi-
mum values. However, compared with the values
of 0.0211 (BP) and 0.0202 (Logistic regression),
all values were smaller. When self-assimilation
was used, the actual parameter in learning was
0.1 and naturally the best generalization error was
obtained, as explained above. However, the po-
tential information increased from 0.3096 (r=0.01)
to 0.8549(r=10). These results show that self-
assimilation could increase potential information
while keeping the generalization error low. In other
words, self-assimilation could increase information
without degrading generalization performance and
actual training.

3.2 Counter Services Data

3.2.1 Experimental Outline

This method was also applied to the data on the
counter services at a local government office in the
Tokyo metropolitan area, provided by the data anal-
ysis competition in 2015 organized by the manage-
ment sciences association1. The number of items
was 3,194, of which 1,000 were used exclusively
for optimizing neural networks. Of these 1,000
items, 70 percent was used for training neural net-
work, while the remaining 30 percent was used for
checking the learning. As shown in Figure 11, the
number of input, hidden and output neurons were 6,
10 and 2, respectively. The objective of the neural
networks was to infer whether the counter services
were being interrupted or not. We used Matlab neu-
ral networks toolbox with all default values for easy
reproduction of the present results.

1https://jasmac-j.jimdo.com/

SELF-ASSIMILATION FOR . . .

Table 1. Summary of experimental results on generalization performance for the counter services data
evaluation data set. The bold face numbers show the best values

Method r Step Avg Std dev Min Max Inf
Potential 0.01 10 0.0197 0.0007 0.0190 0.0210 0.1693

0.1 7 0.0193 0.0007 0.0180 0.0200 0.3059
1 7 0.0199 0.0006 0.0190 0.0210 0.8943
10 9 0.0198 0.0008 0.0190 0.0210 0.9296

Self 0.01 0.3096
0.1 7 0.0193 0.0007 0.0180 0.0200 0.3403
1 0.5273
10 0.8549

BP 1 0.0211 0.0012 0.0200 0.0240 0.1468
Logistic 0.0202 0.0006 0.0190 0.0210

w

L

M

No interruption

 interruption

N

jk

ij

t

t

W

Counter number

Waiting time

Staying time

Working time

Cyclic order

Acceptance number

Figure 11. Network architecture for the counter services data

20 Ryotaro Kamimura and Tsubasa Kitago

3.2.2 Potential Mutual Information and Gener-
alization

Figure 12(a) shows potential mutual information
when the number of steps increased from 1 to 50.
When the parameter was 0.01, mutual information
increased very slowly and could not go beyond 0.6.
When the parameter was 0.1, the information in-
creased immediately to 0.9 with 15 steps and then
fluctuated around 0.9. When the parameter was 1,
the information jumped to 0.9 with five steps and
reached its stable state. When the parameter r in-
creased further to 10, the information also jumped
to 0.9 with five steps. However, the information be-
gan to fluctuate in the later stages of learning steps.
The results show that by increasing the parameter r,
the information could be increased.

Figure 12(b) shows generalization errors as a
function of the number of steps. When the param-
eter was 0.01, the errors decreased gradually and
reached their lowest value with around 30 steps.
When the parameter r was 0.1, the generalization
errors decreased gradually until the number of steps
was 25. Then, the error could not be decreased.
When the parameter r increased further to 1 and 10,
the errors sharply decreased only with a few learn-
ing steps. Then, the errors began to fluctuate around
0.09. The results show that the generalization errors
could not be decreased, when the parameter r was
increased. When the parameter r increased, the po-
tential information tended to increase as shown in
Figure 12(a). This means that when the parameter
increased, too much information or excessive infor-
mation was accumulated. This excessive informa-
tion tends to degrade generalization performance,
making it necessary to reduce this excessive infor-
mation content.

3.2.3 Connection Weights

Figure 13 shows connection weights when the pa-
rameter increased from 0.01 to 10. As can be
seen in the figure, when the parameter increased,
gradually, connection weights into the ninth hid-
den neurons remained strong, while all the other
weights were pushed toward zero. When the param-
eter r was 0.01, many strong connection weights
were produced. Though connection weights into
the ninth hidden neuron became stronger, we had

some difficulty in detecting important connection
weights. When the parameter was increased to 0.1,
the connection weights into the ninth hidden neuron
became more explicit. When the parameter was in-
creased from 1 and 10, for all steps except the first
step, the connection weights into the ninth hidden
neuron remained strong, while all the other connec-
tion weights became almost zero.

The results show that if we try to improve gener-
alization performance, we need heavily distributed
connection weights, which prevents us from inter-
preting the connection weights. On the other hand,
if we try to interpret connection weights, we need
to increase the parameter r and hence increase the
potential information. This increase in the poten-
tial information has the effect of simplifying con-
nection weights for better interpretation. However,
generalization performance is degraded because of
the excessive potential information.

3.2.4 Self-Assimilated Information and Gener-
alization

To reduce the excessive information content, we in-
troduced self-assimilation, where the characteris-
tics of connection weights are used to modify the
weights themselves. We expected that the charac-
teristics of weights would be accentuated by the
process of self-assimilation. Thus, with a relatively
small number of learning steps, we presumed that
we could estimate the main characteristics of the
connection weights. For the parameter r, keeping
the parameter r smaller, we attempted to extract
connection weights similar to those obtained when
the parameter r was much larger.

Figure 14 shows self-assimilated information
when the parameter increased from 0.01 to 10. As
shown in Figure 14(b), generalization errors were
lower because the parameter was actually set to
0.01. However, potential mutual information was
increased in this case. As shown in Figure 14(a),
when the parameter r was 0.01, the potential infor-
mation slowly increased but to a level below 0.6.
When the parameter was 0.1, the information in-
creased over 0.6. When the information was fur-
ther increased to 1, the information became close to
0.9. Finally, when the parameter r was 10, the in-
formation increased to almost the maximum value

21Ryotaro Kamimura and Tsubasa Kitago

3.2.2 Potential Mutual Information and Gener-
alization

Figure 12(a) shows potential mutual information
when the number of steps increased from 1 to 50.
When the parameter was 0.01, mutual information
increased very slowly and could not go beyond 0.6.
When the parameter was 0.1, the information in-
creased immediately to 0.9 with 15 steps and then
fluctuated around 0.9. When the parameter was 1,
the information jumped to 0.9 with five steps and
reached its stable state. When the parameter r in-
creased further to 10, the information also jumped
to 0.9 with five steps. However, the information be-
gan to fluctuate in the later stages of learning steps.
The results show that by increasing the parameter r,
the information could be increased.

Figure 12(b) shows generalization errors as a
function of the number of steps. When the param-
eter was 0.01, the errors decreased gradually and
reached their lowest value with around 30 steps.
When the parameter r was 0.1, the generalization
errors decreased gradually until the number of steps
was 25. Then, the error could not be decreased.
When the parameter r increased further to 1 and 10,
the errors sharply decreased only with a few learn-
ing steps. Then, the errors began to fluctuate around
0.09. The results show that the generalization errors
could not be decreased, when the parameter r was
increased. When the parameter r increased, the po-
tential information tended to increase as shown in
Figure 12(a). This means that when the parameter
increased, too much information or excessive infor-
mation was accumulated. This excessive informa-
tion tends to degrade generalization performance,
making it necessary to reduce this excessive infor-
mation content.

3.2.3 Connection Weights

Figure 13 shows connection weights when the pa-
rameter increased from 0.01 to 10. As can be
seen in the figure, when the parameter increased,
gradually, connection weights into the ninth hid-
den neurons remained strong, while all the other
weights were pushed toward zero. When the param-
eter r was 0.01, many strong connection weights
were produced. Though connection weights into
the ninth hidden neuron became stronger, we had

some difficulty in detecting important connection
weights. When the parameter was increased to 0.1,
the connection weights into the ninth hidden neuron
became more explicit. When the parameter was in-
creased from 1 and 10, for all steps except the first
step, the connection weights into the ninth hidden
neuron remained strong, while all the other connec-
tion weights became almost zero.

The results show that if we try to improve gener-
alization performance, we need heavily distributed
connection weights, which prevents us from inter-
preting the connection weights. On the other hand,
if we try to interpret connection weights, we need
to increase the parameter r and hence increase the
potential information. This increase in the poten-
tial information has the effect of simplifying con-
nection weights for better interpretation. However,
generalization performance is degraded because of
the excessive potential information.

3.2.4 Self-Assimilated Information and Gener-
alization

To reduce the excessive information content, we in-
troduced self-assimilation, where the characteris-
tics of connection weights are used to modify the
weights themselves. We expected that the charac-
teristics of weights would be accentuated by the
process of self-assimilation. Thus, with a relatively
small number of learning steps, we presumed that
we could estimate the main characteristics of the
connection weights. For the parameter r, keeping
the parameter r smaller, we attempted to extract
connection weights similar to those obtained when
the parameter r was much larger.

Figure 14 shows self-assimilated information
when the parameter increased from 0.01 to 10. As
shown in Figure 14(b), generalization errors were
lower because the parameter was actually set to
0.01. However, potential mutual information was
increased in this case. As shown in Figure 14(a),
when the parameter r was 0.01, the potential infor-
mation slowly increased but to a level below 0.6.
When the parameter was 0.1, the information in-
creased over 0.6. When the information was fur-
ther increased to 1, the information became close to
0.9. Finally, when the parameter r was 10, the in-
formation increased to almost the maximum value

SELF-ASSIMILATION FOR . . .

5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

In
fo

rm
at

io
n

5 10 15 20 25 30 35 40 45 50

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Number of steps

G
en

er
al

iz
at

io
n

 e
rr

o
r

(a) Potential information

(b) Generalization errors

(a) 0.01

(a) 0.01

(b) 0.1

(b) 0.1

(c) 1

(c) 1

(d) 10

(d) 10

Figure 12. Potential mutual information (a) and generalization errors (b) for four different parameter
values: 0.01 (a), 0.1 (b), 1 (c) and 10 (d) for the counter services data.

22 Ryotaro Kamimura and Tsubasa Kitago

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

(a) 0.01 (a) 0.1 (a) 1 (a) 10

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 5 (b2) 5 (c2) 5 (d2) 5

(a3) 10 (b3) 10 (c3) 10 (d3) 10

(a4) 30 (b4) 30 (c4) 30 (d4) 30

(a5) 50 (b5) 50 (c5) 50 (d5) 50

Figure 13. Connection weights by four different parameter values for the counter services data.

23Ryotaro Kamimura and Tsubasa Kitago

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

(a) 0.01 (a) 0.1 (a) 1 (a) 10

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 5 (b2) 5 (c2) 5 (d2) 5

(a3) 10 (b3) 10 (c3) 10 (d3) 10

(a4) 30 (b4) 30 (c4) 30 (d4) 30

(a5) 50 (b5) 50 (c5) 50 (d5) 50

Figure 13. Connection weights by four different parameter values for the counter services data.

SELF-ASSIMILATION FOR . . .

of 1, in just three steps. This shows that the self-
assimilation can be used to increase the informa-
tion or the self-assimilated information almost to
the maximum value of 1 in the end, while main-
taining good generalization performance.

3.2.5 Self-Assimilated Connection Weights

Figure 15 shows the connection weights when the
parameter increased from 0.01 to 10. When the
parameter increased, the connection weights into
the ninth hidden neuron became stronger. When
the parameter r was 0.01, many strong connection
weights were produced. When the parameter r in-
creased from 0.01 to 0.1, connection weights into
the ninth neuron tended to gradually become larger.
When the parameter r was 1, connection weights
into the ninth hidden neuron became clearer, while
keeping some weak connection weights. When
the parameter was ten, connection weights into the
ninth hidden neuron remained strong while all the
other connection weights became almost zero.

If we compare the connection weights in Fig-
ure 13 with the self-assimilation weights in Fig-
ure 15, we can see that the self-assimilated weights
clearly represented the real weights. Because the
self-assimilated weights are not accompanied by
learning processes, it can be that self-assimilation
is able to estimate the characteristics of weights in
a much simpler manner.

3.2.6 Collective Interpretation

Figures 16(a) and (b) show connection weights ad-
justed by the signs of hidden-output connection
weights by ten different data sets and initial con-
ditions for r=0.01 and 10, respectively. When the
parameter r was 0.01, connection weights to a spe-
cific neuron became larger, but there were still many
weak connection weights. When the parameter r in-
creased to 10, those weak connection weights dis-
appeared and connection weights into a specific
neuron remained strong. Of ten connection weights,
six weights showed that the connection weights
from the first neuron were much clearer than the
other ones. Thus, we can see that the first input
neuron played the most important role in learning.

Figure 17(a) shows the average connection
weights when the parameter was 0.01. Connec-
tion weights from the first, fourth and sixth input

neurons were strongly positive, while weights from
the third and fifth input neurons were strongly neg-
ative. When parameter increased to 10 in Figure
17(b), connection weights from the first input neu-
ron remained strong, while all the other connection
weights became smaller. Figure 17(c) shows regres-
sion coefficients by the logistic regression analysis.
One of the major differences between the methods
lay in the strength of the connection weights from
the first input neuron, which was much smaller than
those by the potential information method in Figure
17(a) and (b). In other words, self-assimilation was
able to highlight the importance of the first input
neuron clearly.

Let us interpret the average weights in Figure
17(b). The connection weights from the third input
neuron and the fifth input neuron, representing the
waiting time and staying time, were strongly nega-
tive. This means that as the waiting time and stay-
ing time become larger, the possibility of interrup-
tion became naturally higher. On the other hand,
the larger positive connection weight from the first
input neuron could be observed. The first input neu-
ron was simply the counter number. In other words,
when the counter number increased, the possibility
of interruption became smaller. This suggests that
the counter placement in the city government office
was a major cause of interruption. Practically, what
this means is that to reduce the loss by the interrup-
tion, it may be wise to re-organize the placement of
the counters.

3.2.7 Generalization Comparison

Table 2 shows generalization comparison by the
present method, BP with the early stopping and the
logistic analysis. The lowest average error of 0.071
was obtained by the present method. The lowest er-
rors of 0.043 and 0.093 in terms of minimum and
maximum error were also obtained by the present
method. Thus, the lowest errors in terms of the aver-
age, minimum and maximum values were obtained
by the present method. By the logistic analysis, the
error increased to 0.101. Finally, the worst error of
0.111 was obtained by the BP with the early stop-
ping.

For the standard deviation, the smallest value of
0003 was obtained by the logistic regression anal-
ysis. This means that the stable solutions were ob-
tained by the logistic regression analysis. By the

24 Ryotaro Kamimura and Tsubasa Kitago

5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

In
fo

rm
at

io
n

5 10 15 20 25 30 35 40 45 50

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Number of steps

G
en

er
al

iz
at

io
n
 e

rr
o
r

(a) Potential information

(b) Generalization errors

(a) 0.01

(b) 0.1

(c) 1

(d) 10

Figure 14. Self-assimilated information (a) and generalization errors (b) for different parameter values for
the counter services data.

Table 2. Summary of experimental results on generalization performance for the counter services data
evaluation data set. The bold face numbers show the best values.

Method r Step Avg Std dev Min Max Inf
Potential 0.01 31 0.071 0.017 0.043 0.093 0.409

0.10 45 0.078 0.016 0.056 0.101 0.866
1 10 0.086 0.016 0.052 0.101 0.925
10 8 0.085 0.013 0.061 0.101 0.908

Self 0.01 31 0.071 0.017 0.043 0.093 0.419
0.10 31 0.500
1 31 0.845
10 31 0.993

BP 1 0.111 0.048 0.076 0.242 0.078
Logistic 0.101 0.003 0.096 0.107

25Ryotaro Kamimura and Tsubasa Kitago

5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

In
fo

rm
at

io
n

5 10 15 20 25 30 35 40 45 50

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Number of steps

G
en

er
al

iz
at

io
n
 e

rr
o
r

(a) Potential information

(b) Generalization errors

(a) 0.01

(b) 0.1

(c) 1

(d) 10

Figure 14. Self-assimilated information (a) and generalization errors (b) for different parameter values for
the counter services data.

Table 2. Summary of experimental results on generalization performance for the counter services data
evaluation data set. The bold face numbers show the best values.

Method r Step Avg Std dev Min Max Inf
Potential 0.01 31 0.071 0.017 0.043 0.093 0.409

0.10 45 0.078 0.016 0.056 0.101 0.866
1 10 0.086 0.016 0.052 0.101 0.925
10 8 0.085 0.013 0.061 0.101 0.908

Self 0.01 31 0.071 0.017 0.043 0.093 0.419
0.10 31 0.500
1 31 0.845
10 31 0.993

BP 1 0.111 0.048 0.076 0.242 0.078
Logistic 0.101 0.003 0.096 0.107

SELF-ASSIMILATION FOR . . .

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

(a) 0.01 (a) 0.1 (a) 1 (a) 10

(a1) 1 (b1) 1 (c1) 1 (d1) 1

(a2) 5 (b2) 5 (c2) 5 (d2) 5

(a3) 10 (b3) 10 (c3) 10 (d3) 10

(a4) 30 (b4) 30 (c4) 30 (d4) 30

(a5) 50 (b5) 50 (c5) 50 (d5) 50

Figure 15. Self-assimilated weights by four different initial weights for the counter services data.

26 Ryotaro Kamimura and Tsubasa Kitago

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

(a) 0.01

(a1) (b1)

(b2)

(b3)

(b4)

(b5)

(a2)

(a3)

(a4)

(a5)

(a6) (b6)

(b7)

(b8)

(b9)

(b10)

(a7)

(a8)

(a9)

(a10)

(b) 10 (b) 10(a) 0.01

Figure 16. Self-assimilated weights multiplied by signW1 jwith r = 0.01 (a) and r = 10 (b) by ten different
data sets and initial conditions for the counter services data.

27Ryotaro Kamimura and Tsubasa Kitago

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

2 4 6

2

4

6

8

10

Input

H
id

d
e
n

(a) 0.01

(a1) (b1)

(b2)

(b3)

(b4)

(b5)

(a2)

(a3)

(a4)

(a5)

(a6) (b6)

(b7)

(b8)

(b9)

(b10)

(a7)

(a8)

(a9)

(a10)

(b) 10 (b) 10(a) 0.01

Figure 16. Self-assimilated weights multiplied by signW1 jwith r = 0.01 (a) and r = 10 (b) by ten different
data sets and initial conditions for the counter services data.

SELF-ASSIMILATION FOR . . .

1 2 3 4 5 6
5

0

5

1 2 3 4 5 6
-4

-2

0

2

4

1 2 3 4 5 6
-20

-10

0

10

20

(b) 10

(c) Logistic regression

(a) 0.01

Counter number

Waiting time Staying time

Cyclic order

No interruption

Figure 17. Average weights and regression coefficients by potential learning with r = 0.01 (a) and r = 10
(b) and the regression analysis (c) for the counter services data.

28 Ryotaro Kamimura and Tsubasa Kitago

conventional BP with the early stopping, the stan-
dard deviation was 0.048 - the largest value. When
the parameter r increased from 0.01 to 10, the stan-
dard deviation decreased from 0.017 to 0.013. This
means that by increasing information, the learning
became more stable.

Finally, the real information was 0.078 by the
conventional BP. When the parameter increased
from 0.01 to 1, the information increased from
0.409 to 0.925. Then, the information decreased
slightly to 0.908, when the parameter r was 10.
Correspondingly, the generalization error increased
from 0.071 to 0.086 when the parameter increased
from 0.01 to 1. Then, the average error decreased
slightly to 0.085 when the parameter r was 10. This
suggests that the excessive information acquisition
degrades generalization performance.

4 Conclusion

The present paper proposed a new type
of information-theoretic method called “self-
assimilation” to solve the problem of excessive
information acquisition. Thus far, the potential
learning method has shown good performance in
terms of generalization and interpretation. How-
ever, one of the major problems is that the method
tends to acquire information content excessively in
the early stages of learning. To cope with this prob-
lem, we had previously attempted to make learning
as slow as possible by reducing the potentiality pa-
rameter. This means that neural networks tend to
acquire information content very slowly, a require
a large number of learning steps.

To solve this problem of excessive informa-
tion acquisition, we introduced the self-assimilation
method where the characteristics of connection
weights are enhanced by increasing the potential-
ity parameter. This makes it possible to predict
the future characteristics of connection weights.
Thus, we can improve generalization performance
by eliminating excessive information and at the
same time interpreting connection weights whose
future characteristics are predicted by the enhance-
ment of the weights.

The method was applied to the data of the
counter services of a local government of Tokyo

metropolitan area. The results showed that exces-
sive information was eliminated, and in addition,
a smaller number of connection weights were pro-
duced for better interpretation. One of the major
problems is how to choose the appropriate poten-
tiality parameter to compromise between the ratio
of learning and generalization. However, even at the
present stage of study, it can be said that the method
is simple enough to be applied to large-scale data
and multi-layered neural networks.

Acknowledgement

We would like to offer my special thanks to the
management sciences association2. The data on the
counter services of a local government of Tokyo
metropolitan area was actually provided by the data
analysis competition in 2015 organized by the asso-
ciation. This research is supported by the Japan So-
ciety for the Promotion of Science under the Grants-
in-Aid for Scientific Research-grant 16K00339.

References
[1] R. Linsker, Self-organization in a perceptual net-

work, Computer, vol. 21, no. 3, pp. 105–117, 1988.

[2] R. Linsker, How to generate ordered maps by max-
imizing the mutual information between input and
output signals, Neural computation, vol. 1, no. 3,
pp. 402–411, 1989.

[3] R. Linsker, Local synaptic learning rules suffice to
maximize mutual information in a linear network,
Neural Computation, vol. 4, no. 5, pp. 691–702,
1992.

[4] R. Linsker, Improved local learning rule for infor-
mation maximization and related applications, Neu-
ral networks, vol. 18, no. 3, pp. 261–265, 2005.

[5] G. Deco, W. Finnoff, and H. Zimmermann, Unsu-
pervised mutual information criterion for elimina-
tion of overtraining in supervised multilayer net-
works, Neural Computation, vol. 7, no. 1, pp. 86–
107, 1995.

[6] G. Deco and D. Obradovic, An information-
theoretic approach to neural computing, Springer
Science & Business Media, 2012.

[7] H. B. Barlow, Unsupervised learning, Neural com-
putation, vol. 1, no. 3, pp. 295–311, 1989.

2https://jasmac-j.jimdo.com/

29Ryotaro Kamimura and Tsubasa Kitago

conventional BP with the early stopping, the stan-
dard deviation was 0.048 - the largest value. When
the parameter r increased from 0.01 to 10, the stan-
dard deviation decreased from 0.017 to 0.013. This
means that by increasing information, the learning
became more stable.

Finally, the real information was 0.078 by the
conventional BP. When the parameter increased
from 0.01 to 1, the information increased from
0.409 to 0.925. Then, the information decreased
slightly to 0.908, when the parameter r was 10.
Correspondingly, the generalization error increased
from 0.071 to 0.086 when the parameter increased
from 0.01 to 1. Then, the average error decreased
slightly to 0.085 when the parameter r was 10. This
suggests that the excessive information acquisition
degrades generalization performance.

4 Conclusion

The present paper proposed a new type
of information-theoretic method called “self-
assimilation” to solve the problem of excessive
information acquisition. Thus far, the potential
learning method has shown good performance in
terms of generalization and interpretation. How-
ever, one of the major problems is that the method
tends to acquire information content excessively in
the early stages of learning. To cope with this prob-
lem, we had previously attempted to make learning
as slow as possible by reducing the potentiality pa-
rameter. This means that neural networks tend to
acquire information content very slowly, a require
a large number of learning steps.

To solve this problem of excessive informa-
tion acquisition, we introduced the self-assimilation
method where the characteristics of connection
weights are enhanced by increasing the potential-
ity parameter. This makes it possible to predict
the future characteristics of connection weights.
Thus, we can improve generalization performance
by eliminating excessive information and at the
same time interpreting connection weights whose
future characteristics are predicted by the enhance-
ment of the weights.

The method was applied to the data of the
counter services of a local government of Tokyo

metropolitan area. The results showed that exces-
sive information was eliminated, and in addition,
a smaller number of connection weights were pro-
duced for better interpretation. One of the major
problems is how to choose the appropriate poten-
tiality parameter to compromise between the ratio
of learning and generalization. However, even at the
present stage of study, it can be said that the method
is simple enough to be applied to large-scale data
and multi-layered neural networks.

Acknowledgement

We would like to offer my special thanks to the
management sciences association2. The data on the
counter services of a local government of Tokyo
metropolitan area was actually provided by the data
analysis competition in 2015 organized by the asso-
ciation. This research is supported by the Japan So-
ciety for the Promotion of Science under the Grants-
in-Aid for Scientific Research-grant 16K00339.

References
[1] R. Linsker, Self-organization in a perceptual net-

work, Computer, vol. 21, no. 3, pp. 105–117, 1988.

[2] R. Linsker, How to generate ordered maps by max-
imizing the mutual information between input and
output signals, Neural computation, vol. 1, no. 3,
pp. 402–411, 1989.

[3] R. Linsker, Local synaptic learning rules suffice to
maximize mutual information in a linear network,
Neural Computation, vol. 4, no. 5, pp. 691–702,
1992.

[4] R. Linsker, Improved local learning rule for infor-
mation maximization and related applications, Neu-
ral networks, vol. 18, no. 3, pp. 261–265, 2005.

[5] G. Deco, W. Finnoff, and H. Zimmermann, Unsu-
pervised mutual information criterion for elimina-
tion of overtraining in supervised multilayer net-
works, Neural Computation, vol. 7, no. 1, pp. 86–
107, 1995.

[6] G. Deco and D. Obradovic, An information-
theoretic approach to neural computing, Springer
Science & Business Media, 2012.

[7] H. B. Barlow, Unsupervised learning, Neural com-
putation, vol. 1, no. 3, pp. 295–311, 1989.

2https://jasmac-j.jimdo.com/

SELF-ASSIMILATION FOR . . .

[8] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison,
Finding minimum entropy codes, Neural Computa-
tion, vol. 1, no. 3, pp. 412–423, 1989.

[9] J. J. Atick, Could information theory provide an
ecological theory of sensory processing?, Network:
Computation in neural systems, vol. 3, no. 2,
pp. 213–251, 1992.

[10] Z. Nenadic, Information discriminant analysis:
Feature extraction with an information-theoretic ob-
jective, Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 29, no. 8, pp. 1394–
1407, 2007.

[11] J. C. Principe, D. Xu, and J. Fisher, Information
theoretic learning, Unsupervised adaptive filtering,
vol. 1, pp. 265–319, 2000.

[12] J. C. Principe, Information theoretic learning:
Renyi’s entropy and kernel perspectives, Springer
Science & Business Media, 2010.

[13] K. Torkkola, Feature extraction by non parametric
mutual information maximization, The Journal of
Machine Learning Research, vol. 3, pp. 1415–1438,
2003.

[14] R. Kamimura, Simple and stable internal repre-
sentation by potential mutual information maxi-
mization, in International Conference on Engineer-
ing Applications of Neural Networks, pp. 309–316,
Springer, 2016.

[15] R. Kamimura, Self-organizing selective potential-
ity learning to detect important input neurons, in
Systems, Man, and Cybernetics (SMC), 2015 IEEE
International Conference on, pp. 1619–1626, IEEE,
2015.

[16] R. Kamimura, Collective interpretation and po-
tential joint information maximization, in Intel-
ligent Information Processing VIII: 9th IFIP TC
12 International Conference, IIP 2016, Melbourne,
VIC, Australia, November 18-21, 2016, Proceed-
ings, pp. 12–21, Springer, 2016.

[17] R. Kamimura, Repeated potentiality assimilation:
Simplifying learning procedures by positive, inde-
pendent and indirect operation for improving gen-
eralization and interpretation (in press), in Proc. of
IJCNN-2016, (Vancouver), 2016.

[18] R. Kamimura and T. Kamimura, Structural infor-
mation and linguistic rule extraction, in Proceedings
of ICONIP, pp. 720–726, 2000.

[19] R. Kamimura, T. Kamimura, and O. Uchida, Flexi-
ble feature discovery and structural information con-
trol, Connection science, vol. 13, no. 4, pp. 323–
347, 2001.

[20] R. Kamimura, Information-theoretic competitive
learning with inverse euclidean distance output
units,” Neural processing letters, vol. 18, no. 3,
pp. 163–204, 2003.

Ryotaro Kamimura is currently a
professor of IT Education Center of
Tokai University in Japan. His research
interests are information-theoretic ap-
proach to neural computing.

Tsubasa Kitago was a student of
School of Political Science and Eco-
nomics of Tokai University in Japan.
His research interests are the artificial
intelligence and its application to data
analysis and autonomous cars.

