PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxygen isotopic fractionation in rat bones as a result of consuming thermally processed water – bioarchaeological applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stable isotope analyses of oxygen are used in anthropology for such purposes as determination of origin of individuals, tracking migration routes or dynamics of human community relocation. The methodology related to oxygen isotope analysis has been founded on the relationship between its isotopic composition within phosphate groups of bone tissue (δ18Op) in individuals being analysed and the water consumed by such individuals (δ18Ow). Such a relationship has been observed in many species of mammals, including humans. However, the influence of culinary practices on the isotopic delta values of apatite phosphates of individuals has not yet been researched. The present study, which was conducted using laboratory rats, is an investigation of the influence of the thermal processing of water drank by such rats on the isotopic composition (δ18Op) of bone apatite. Increasing the value of the isotopic composition of water by about 6.1 ‰ during boiling resulted in an increase in the oxygen isotopic value δ18Op of rats drinking the water by about 4 ‰ (29%). It can be expected that regular consumption of heavily isotopic drinks and foods by humans may cause the δ18Op of individuals to exceed the range of isotopic environmental variability, even by a few per mille.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • Department of Environmental Chemistry, Institute of Biological Sciences, Cardinal Wyszyński University in Warsaw, Wóycickiego 1/3, 01-918 Warsaw, Poland
  • Department of Human Ecology, Institute of Biological Sciences, Cardinal Wyszyński University in Warsaw, Wóycickiego 1/3, 01-918 Warsaw, Poland
  • Division of Radioisotopes, Institute of Physics Centre for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Departament of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
Bibliografia
  • 1. Adamson MW, 2004. Food in Medieval Times. Food Through History. Greenwood Press: London.
  • 2. Atkins PW, 2001. Chemia fizyczna. PWN.
  • 3. Ayliffe LK, Lister AM and Chivas AR, 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99(3–4): 179–191, DOI 10.1016/0031- 0182(92)90014-V.
  • 4. Bentley RA and Knipper C, 2005. Geographical patterns in biologically available strontium, carbon and oxygen isotope signatures in prehistoric southwest Germany. Archaeometry 47(3): 629–644, DOI 10.1111/j.1475-4754.2005.00223.x.
  • 5. Bocherens H, Fogel ML, Tuross N and Zeder M, 1995. Trophic Structure and Climatic Information From Isotopic Signatures in Pleistocene Cave Fauna of Southern England. Journal of Archaeological Science 22(2): 327–340, DOI 10.1006/jasc.1995.0035.
  • 6. Brettell R, Montgomery J and Evans J, 2012. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. Journal of Analytical Atomic Spectrometry 27(5): 778–785, DOI 10.1039/c2ja10335d.
  • 7. Britton K, Fuller BT, Tütken T, Mays S and Richards MP, 2015. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology 157(2): 226–241, DOI 10.1002/ajpa.22704.
  • 8. Britton K, Grimes V, Dau J and Richards MP, 2009. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36(5): 1163– 1172, DOI 10.1016/j.jas.2009.01.003.
  • 9. Camin F, Perini M, Colombari G, Bontempo L and Versini G, 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk. Rapid Communications in Mass Spectrometry. John Wiley & Sons, Ltd. 22(11): 1690– 1696, DOI 10.1002/rcm.3506.
  • 10. D’Angela D and Longinelli A, 1990. Oxygen isotopes in living mammal’s bone phosphate: Further results. Chemical Geology: Isotope Geoscience Section 86(1): 75–82, DOI 10.1016/0168- 9622(90)90007-Y.
  • 11. Dansgaard W, 1964. Stable isotopes in precipitation. Tellus 16(4): 436– 468, DOI 10.3402/tellusa.v16i4.8993.
  • 12. Daux V, Lécuyer C, Adam F, Martineau F and Vimeux F, 2005. Oxygen isotope composition of human teeth and the record of climate changes in France (Lorraine) during the last 1700 years. Climatic Change 70(3): 445–464, DOI 10.1007/s10584-005-5385-6.
  • 13. Daux V, Lécuyer C, Héran MA, Amiot R, Simon L, Fourel F, Martineau F, Lynnerup N, Reychler H and Escarguel G, 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55(6): 1138–1147, DOI 10.1016/j.jhevol.2008.06.006.
  • 14. Delgado Huertas A, Iacumin P, Stenni B, Sánchez Chillón B and Longinelli A, 1995. Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59(20): 4299–4305, DOI 10.1016/0016-7037(95)00286-9.
  • 15. Dembińska M, 1999. Food and Drink in Medieval Poland Rediscovering a Cuisine of the Past. University of Pennsylvania Press: Philadelphia.
  • 16. Dupras TL and Schwarcz HP, 2001. Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28(11): 1199–1208, DOI 10.1006/jasc.2001.0640.
  • 17. Fricke HC, Clyde WC and O’Neil JR, 1998. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62(11): 1839–1850, DOI 10.1016/S0016- 7037(98)00114-8.
  • 18. Gat JR, 1980. Handbook of environmental isotope geochemistry. Volume 1, The terrestrial environment, A. In: Fritz P and Fontes JC (eds) Handbook of environmental isotope geochemistry. Volume 1, The terrestrial environment, A. Elsevier : Amsterdam, Oxford, New York, 21–48.
  • 19. Gat JR, 1996. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annual Review of Earth and Planettary Sciences 24:225-262. DOI 10.1146/annurev.earth.24.1.225.
  • 20. Gregoricka LA, 2013. Geographic origins and dietary transitions during the bronze age in the oman peninsula. American Journal of Physical Anthropology 152(3): 353–369, DOI 10.1002/ajpa.22360.
  • 21. Gregoricka LA, Scott AB, Betsinger TK and Polcyn M, 2017. Deviant burials and social identity in a postmedieval Polish cemetery: An analysis of stable oxygen and carbon isotopes from the “vampires” of Drawsko. American Journal of Physical Anthropology 163(4): 741–758, DOI 10.1002/ajpa.23244.
  • 22. Gregoricka LA and Sheridan SG, 2017. Continuity or conquest? A multi-isotope approach to investigating identity in the Early Iron Age of the Southern Levant. American Journal of Physical Anthropology 162(1): 73–89, DOI 10.1002/ajpa.23086.
  • 23. Grimes V and Pellegrini M, 2013. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Communications in Mass Spectrometry 27(3): 375–390, DOI 10.1002/rcm.6463.
  • 24. Hamre SS and Daux V, 2016. Stable oxygen isotope evidence for mobility in medieval and post-medieval Trondheim, Norway. Journal of Archaeological Science: Reports. The Authors 8(July): 416–425, DOI 10.1016/j.jasrep.2016.06.046.
  • 25. Henton E, Meier-Augenstein W and Kemp HF, 2010. The use of oxygen isotopes in sheep molars to investigate past herding practices at the neolithic settlement of çatalhöyük, central anatolia. Archaeometry 52(3): 429–449, DOI 10.1111/j.1475- 4754.2009.00492.x.
  • 26. Hoogewerff J, Papesch W, Kralik M, Berner M, Vroon P, Miesbauer H, Gaber O, Künzel KH and Kleinjans J, 2001. The last domicile of the Iceman from Hauslabjoch: A geochemical approach using Sr, C and O isotopes and trace element signatures. Journal of Archaeological Science 28(9): 983–989, DOI 10.1006/jasc.2001.0659.
  • 27. Hoppe KA, 2006. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: Implication for paleoclimatic reconstructions. Earth and Planetary Science Letters. Elsevier 244(1–2): 408–417, DOI 10.1016/J.EPSL.2006.01.062.
  • 28. Jheon AH, Seidel K, Biehs B and Klein OD, 2013. From molecules to mastication: The development and evolution of teeth. Wiley Interdisciplinary Reviews: Developmental Biology 2(2): 165–182, DOI 10.1002/wdev.63.
  • 29. Kendall EJ, Montgomery J, Evans JA, Stantis C and Mueller V, 2013. Mobility, mortality, and the middle ages: Identification of migrant individuals in a 14th century black death cemetery population. American Journal of Physical Anthropology 150(2): 210–222, DOI 10.1002/ajpa.22194.
  • 30. Kennedy CD, Bowen GJ and Ehleringer JR, 2011. Temporal variation of oxygen isotope ratios (δ18O) in drinking water: Implications for specifying location of origin with human scalp hair. Forensic Science International. Elsevier Ireland Ltd 208(1–3): 156–166, DOI 10.1016/j.forsciint.2010.11.021.
  • 31. Kirsanow K and Tuross N, 2011. Oxygen and hydrogen isotopes in rodent tissues: Impact of diet, water and ontogeny. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V. 310(1–2): 9–16, DOI 10.1016/j.palaeo.2011.03.022.
  • 32. Knudson KJ, 2009. Oxygen isotope analysis in a land of environmental extremes: The complexities of isotopic work in the Andes. International Journal of Osteoarchaeology 19(2): 171–191, DOI 10.1002/oa.1042.
  • 33. Knudson KJ and Torres-Rouff C, 2009. Investigating cultural heterogeneity in San Pedro de Atacama, northern Chile, through biogeochemistry and bioarchaeology. American Journal of Physical Anthropology 138(4): 473–485, DOI 10.1002/ajpa.20965.
  • 34. Lécuyer C, 2004. Oxygen Isotope Analysis of Phosphate. Handbook of Stable Isotope Analytical Techniques. Elsevier, 482–496, DOI 10.1016/B978-044451114-0/50024-7.
  • 35. Lécuyer C, Grandjean P, Paris F, Robardet M and Robineau D, 1996. Deciphering “temperature” and “salinity” from biogenic phosphates: the δ18O of coexisting fishes and mammals of the Middle Miocene sea of western France. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier 126(1–2): 61–74, DOI 10.1016/S0031-0182(96)00070-3.
  • 36. Lee-Thorp J, 2002. Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry 44(3): 435–446, DOI 10.1111/1475- 4754.t01-1-00076.
  • 37. Levinson AA, Luz B and Kolodny Y, 1987. Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry 2(4): 367–371, DOI 10.1016/0883-2927(87)90021-7.
  • 38. Longinelli A, 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48(2): 385–390, DOI 10.1016/0016-7037(84)90259-X.
  • 39. Longinelli A, Iacumin P, Davanzo S and Nikolaev V, 2003. Modern reindeer and mice: Revised phosphate-water isotope equations. Earth and Planetary Science Letters 214(3–4): 491–498, DOI 10.1016/S0012-821X(03)00395-9.
  • 40. Luz B and Kolodny Y, 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth and Planetary Science Letters 75(1): 29–36, DOI 10.1016/0012- 821X(85)90047-0.
  • 41. Luz B, Kolodny Y and Horowitz M, 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48(8): 1689– 1693, DOI 10.1016/0016-7037(84)90338-7.
  • 42. McGlyn G, 2007. Using 13C-, 15N- and 18O stable isotope analysis of human bone tissue to identify transhumance, high altitude habitation and reconstruct palaeodiet for the early medieval Alpine population at Volders, Austria. Ludwig-Maximilians-Universität München .
  • 43. Müldner G, Chenery C and Eckardt H, 2011. The “Headless Romans”: Multi-isotope investigations of an unusual burial ground from Roman Britain. Journal of Archaeological Science. Elsevier Ltd 38(2): 280–290, DOI 10.1016/j.jas.2010.09.003.
  • 44. Navarro N, Lécuyer C, Montuire S, Langlois C and Martineau F, 2004. Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62(2): 172–182, DOI 10.1016/j.yqres.2004.06.001.
  • 45. O’Neil JR, Roe LJ, Reinhard E and Blake RE, 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences (I): 203–212.
  • 46. Oleszczak Ł, Borodovskiy AP, Lisowska-Gaczorek A, Pawlyta J, Kozieł S, Tur SS, Cienkosz-Stepańczak B and Szostek K, 2018. The Origin of Culturally Diversified Individuals Buried in the Early Iron Age Barrow Cemetery at Chultukov Log-1 (Upper Altai) in Light of the Analysis of Stable Oxygen Isotopes. Collegium antropologicum 42(1): 27–37.
  • 47. Osipowicz G, Witas H, Lisowska-Gaczorek A, Reitsema L, Szostek K, Płoszaj T, Kuriga J, Makowiecki D, Jędrychowska-Dańska K and Cienkosz-Stepańczak B, 2017. Origin of the ornamented bâton percé from the Gołębiewo site 47 as a trigger of discussion on long-distance exchange among Early Mesolithic communities of Central Poland and Northern Europe. PLoS ONE 12(10), DOI 10.1371/journal.pone.0184560.
  • 48. Parks CL, 2009. Oxygen Isotope Analysis of Human Bone and Tooth Enamel: Implications for Forensic Investigations. Thesis. San Marcos. Texas.
  • 49. Pellegrini M, Pouncett J, Jay M, Pearson MP and Richards MP, 2016. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain. Scientific Reports. Nature Publishing Group 6: 1–9, DOI 10.1038/srep34986.
  • 50. Polack G and Kania K, 2015. The middle ages unlocked: a guide to life in medieval England, 1050–1300. Stroud: Amberley.
  • 51. Pollard AM, 2011. Isotopes and impact: A cautionary tale. Antiquity 85(328): 631–638, DOI 10.1017/S0003598X00068034.
  • 52. Pollard AM, Pellegrini M and Lee-Thorp JA, 2011. Technical note: Some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. American Journal of Physical Anthropology 145(3): 499–504, DOI 10.1002/ajpa.21524.
  • 53. Prevedorou E, Bonilla MD, Romero A, Buikstra JE, Paz de Miguel Ibáñez M and Knudson KJ, 2010. Residential Mobility and Dental Decoration in Early Medieval Spain: Results from the Eighth Century Site of Plaza del Castillo , Pamplona. Dental Anthropology 23(2): 42–52.
  • 54. Prowse TL, Schwarcz HP, Garnsey P, Knyf M, Macchiarelli R and Bondioli L, 2007. Isotopic evidence for age-related immigration to imperial Rome. American Journal of Physical Anthropology 132(4): 510–519, DOI 10.1002/ajpa.20541.
  • 55. Roberts CA, Millard AR, Nowell GM, Gröcke DR, MacPherson CG, Pearson DG and Evans DH, 2013. Isotopic tracing of the impact of mobility on infectious disease: The origin of people with treponematosis buried in Hull, England, in the late medieval period. American Journal of Physical Anthropology 150(2): 273– 285, DOI 10.1002/ajpa.22203.
  • 56. Royer A, Daux V, Fourel F and Lécuyer C, 2017. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record. American Journal of Physical Anthropology 163(4): 759–771, DOI 10.1002/ajpa.23246.
  • 57. Rubenstein DR and Hobson KA, 2004. From birds to butterflies: Animal movement patterns and stable isotopes. Trends in Ecology and Evolution 19(5): 256–263, DOI 10.1016/j.tree.2004.03.017. Shaw B, Buckley H, Summerhayes G, Anson D, Garling S, Valentin F, Mandui H, Stirling C and Reid M, 2010. Migration and mobility at the Late Lapita site of Reber–Rakival (SAC), Watom Island using isotope and trace element analysis: a new insight into Lapita interaction in the Bismarck Archipelago. Journal of Archaeological Science. Elsevier Ltd 37(3): 605–613, DOI 10.1016/j.jas.2009.10.025.
  • 58. Smith CE and Warshawsky H, 1975. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H‐thymidine. The Anatomical Record 183(4): 523–561, DOI 10.1002/ar.1091830405.
  • 59. Stepańczak B, 2012. Zastosowanie stabilnych izotopów tlenu w badaniu mieszkańców przedlokacyjnego Krakowa. (The use of stable oxygen isotopes in the study of Kraków's pre-lokation residents) Thesis. Kraków. (in Polish).
  • 60. Stephan E, 2000. Oxygen Isotope Analysis of Animal Bone Phosphate: Method Refinement, Influence of Consolidants, and Reconstruction of Palaeotemperatures for Holocene Sites. Journal of Archaeological Science. Academic Press 27(6): 523–535, DOI 10.1006/JASC.1999.0480.
  • 61. Szostek K, Haduch E, Stepańczak B, Kruk J, Szczepanek A, Pawlyta J, Gła;b H and Milisauskas S, 2014. Isotopic composition and identification of the origins of individuals buried in a Neolithic collective grave at Bronocice (southern Poland). HOMO- Journal of Comparative Human Biology 65(2): 115–130, DOI 10.1016/j.jchb.2013.11.001.
  • 62. Tuross N, Reynard LM, Harvey E, Coppa A and McCormick M, 2017. Human skeletal development and feeding behavior: the impact on oxygen isotopes. Archaeological and Anthropological Sciences. Archaeological and Anthropological Sciences 9(7): 1453–1459, DOI 10.1007/s12520-017-0486-5.
  • 63. Vennemann TW, Fricke HC, Blake RE, O’Neil JR and Colman A, 2002. Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chemical Geology. Elsevier 185(3–4): 321–336, DOI 10.1016/S0009-2541(01)00413-2.
  • 64. White C, Longstaffe FJ and Law KR, 2004a. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31(8): 233–250, DOI 10.1016/j.jas.2003.08.007.
  • 65. White CD, Spence MW, Longstaffe FJ and Law KR, 2004b. Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: The evidence from stable oxygen isotopes. Journal of Anthropological Archaeology 23(4): 385–403, DOI 10.1016/j.jaa.2004.08.002.
  • 66. White CD, Spence MW, Stuart-Williams HLQ and Schwarcz HP, 1998. Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25(7): 643–655, DOI 10.1006/jasc.1997.0259.
  • 67. Yurtsever Y and Gat JR, 1981. Atmospheric waters. In: Gat J.R and Gonfiantini R, eds., Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Vienna, 210: 103–142.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d3aba80-0926-4448-8e91-a2b7a8be455c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.