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Abstract

Empirical Mode Decomposition technique (EMD) is a recent development in non-stationary 

and non-linear data analysis. It is an algorithm which adaptively decomposes the signal in the sum 

of Intrinsic Mode Functions (IMFs) from which the instantaneous frequency can be easily 

computed. EMD has proven its effectiveness but is still affected from various problems. One of 

these is the “end-effect”, a phenomenon occurring at the start and at the end of the data due to the 

splines fitting on which the EMD is based. Various techniques have been tried to overcome the 

end-effect, like different data extension or mirroring procedures at the data boundary. In this paper 

we made use of the IMFs orthogonality property to apply a symmetrical window to the data before 

EMD for end-effect reduction. Subsequently the IMFs are post-processed to compensate for data 

alteration due to windowing. The simulations show that IMFs obtained with this method are of 

better quality near the data boundaries while remaining almost identical to classical EMD ones. 
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1. INTRODUCTION 

The Empirical Mode Decomposition (EMD) is a 

signal processing method firstly developed by N.E. 

Huang [5] particularly suited for non-linear and non-

stationary data analysis. It aims to decompose the 

signal in the sum of Intrinsic Mode Functions (IMF) 

rather than sinusoidal functions (as Fourier 

transform does) or other a priori chosen expansion 

basis. The IMFs represent single oscillatory modes 

leading to meaningful instantaneous frequency 

estimates, so far allowing a better insight on the 

physical processes involved in the data under 

analysis. In fact, an IMF is a function defined in [5] 

as follows:  

1) in the whole dataset, the number of extrema and 

the number of zero-crossings must either equal 

or differ at most by one; 

2) at any point, the mean value of the envelope 

defined by the local maxima and the envelope 

defined by the local minima is zero. 

In another words an IMF is almost symmetric 

with a unique local frequency. The properties of the 

IMF also set the convergence criterion of EMD. The 

EMD procedure is described as following:  

1) find out the local maxima and the local minima 

of the signal s(t) firstly, then the upper (lower) 

envelope can be get as the cubic spline 

interpolation of the maxima (minima). 

2) Compute the mean envelope m(t) as the average 

of the upper envelope and the lower one. Let 

h = s(t) - m(t) be the new signal and repeat the 

procedure above up to h satisfies the IMF 

definition, then set ci = h.

3) Separate the IMF from the signal, ri+1 = s(t) – ci.

4) Let ri+1 be the new signal now (i.e.  s(t) = ri+1),

repeat the sifting until the final residue rn(t) has 

at most one extreme or it is a constant or a 

monotonic function. Thus: 
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The obtained IMFs form a local orthogonal basis 

as stressed in [5], although orthogonality can’t be 

theoretically proved. In fact, the EMD method is 

totally data adaptive - leading to the aforementioned 

advantages in non-linear and non-stationary data 

analysis - but still lacks of a firm mathematical 

background. This is the main cause of two of the 

principal problems of EMD process, which are the 

convergence criterion and the end-effect, the latter 

being treated in this paper. The convergence 

criterion declares if the result of the last completed 

sifting is an IMF or not. In the EMD literature 

various criteria are proposed and here we recall 

some of the principal ones. In [5] is made use of a 

Cauchy type convergence criterion which stops the 

sifting process at iteration k when the parameter SDk

is less than a predetermined value. SDk is defined as 

follows: 
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where k is the actual iteration number, t is the signal 

sample index and T is the signal’s total samples 

number. Typically, the stopping values for SD lie in 

the 0.2 - 0.3 range. In this paper we made use of this 
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stopping criterion, and the SD stopping value had 

been set to 0.2. In [2] the Mean Value criterion is 

illustrated, where the SD value is simply the mean 

envelope m(t) at current iteration and must be 

smaller than a predetermined value everywhere to 

stop sifting. In [6] the Fixed Siftings criterion is 

proposed, where the sifting process is stopped after a 

given number of iterations (typically around 10). In 

[4] the S-number criterion is illustrated, where the 

sifting is stopped when for S consecutive iterations 

the signal’s number of extrema and zero crossings 

stay the same and are equal or differ at most by one. 

Typical values for S are in the 4 - 8 range. The next 

sections will discuss the end-effect problem in 

details, and propose a windowing method to reduce 

it. The reduction of the end-effect problem is the 

main target and novelty of this paper. 

2. THE EMD END-EFFECT 

The end-effect is a phenomenon occurring in 

EMD due to splines fitting at the beginning and at 

the end of the data. The upper and lower envelope in 

the sifting process will swing at the two ends of the 

data sequence, due to the lack of constraints for the 

spline definition. If we adopt the classical 

mathematic definition of local extrema in a limited 

set, a boundary data point is always a local 

maximum or minimum, depending on the following 

data point (or the preceding one if the data point 

considered is the last one). Therefore, there is always 

one spline of the two envelopes to be calculated 

(upper and lower) which lacks of definition between 

the first (or last) local extrema and the data 

boundary. This results in a swing of the envelope 

splines (and consequently of the mean spline) that 

will gradually pollute inside the whole data sequence 

making the result seriously distorted, particularly the 

lowest frequency IMFs (which are the last extracted 

by the sifting process).  As previously mentioned, 

this IMFs corruption is called end-effect in the EMD 

jargon. Researchers have been developing several 

techniques to reduce the end-effect, the most of them 

dealing with signal extension outside the endpoints 

in order to resolve the splines uncertain definition at 

the boundaries.  Direct data mirroring [7] is an 

operation that chooses two endpoints of a signal as 

the mirror positions, expands it beyond the two 

mirrors in the outside directions, and obtains a new 

periodic signal with a length of two times the 

original one. Since only the extrema are needed for 

envelopes calculation, the natural update of the 

mirroring method aims to the correct estimation of 

the data extrema beyond the boundaries by means of 

existing signal processing tools. In [1] this is 

achieved by virtue of a neural network estimation, 

while in [8] the extrema extension is done by the use 

of a Support Vector regression at both endpoints. In 

[10] the Ratio Boundary Extension technique is 

proposed, an approach that couples the mirror 

expansion with the extrapolation prediction of 

regression function to the treatment of end-effects, 

with extrema estimation by means of a quadratic 

interpolation on the near-endpoints extrema. Other 

works are concerned with applications of Auto-

Regressive and Moving-Average (ARMA) modeling 

[3], polynomial regression and so on. In our view, 

all of these kinds of signal processing tend to loose 

the philosophical approach of EMD which is the 

source of its powerful outcomes. In fact, the 

aforementioned signal processing tools have been 

developed on some starting hypotheses on the data 

that the original EMD doesn’t guess (due to its 

algorithmic form), thus potentially losing the non-

stationary/non-linear adaptability of EMD. 

Moreover, the end-effect problem could still remain 

due to the fact that even if extended perfectly, a 

digitized signal has always two endpoints to deal 

with. In our view the original EMD approach (i.e.: 

no a priori hypothesis on the data) is conserved, and 

in the next section we propose a signal symmetrical 

windowing in order to reduce the end-effect. 

3. A WINDOW BASED METHOD TO 

REDUCE EMD END-EFFECT 

The basic idea is similar to the one proposed in 

[9], where the signal is symmetrical windowed in 

order to have always the endpoints with zero value. 

By doing this, during the sifting process the upper 

and lower envelope are forced to have the first and 

the last point with zero value, resolving the 

uncertainty of the envelope value at the endpoints. 

Unlike in [9] where a “flat top” and classic cosine 

windows were used, such as Hanning and Hamming, 

we made use of a triangular window (also called 

Bartlett window) in order to give less weight to the 

signal near the boundaries and no significance at all 

at the endpoints, where the windows is zero valued. 

This approach simulates the perspective of the 

human eye watching the horizon: the further one 

watch, the less detail is retrieved (i.e.: the less 

certainty on what is being looked at). In our case, the 

“observer” is placed in the middle of the signal and 

his horizons are the endpoints, by virtue of the 

windowing. Furthermore, if w(t) is the window, we 

rewrite Eq. 1 for the windowed signal as: 
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Since the EMD process separates the IMFs 

simply by differentiation, and IMFs are locally 

orthogonal, we thought that we could extract the 

IMFs of the windowed signal and subsequently 

multiply them by  1 / w(t), obviously rejecting the 

endpoints where the window reciprocal is infinite 

(i.e.: multiply both sides of Eq. 3 by 1 / w(t) where 

possible). By doing this, we should be able to 

retrieve the original signal’s IMFs. To prove the 

effectiveness of this procedure, we tested it on 

simulated data and the results are compared with the 

standard EMD without any end-effect compensation. 
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4. SIMULATIONS AND DISCUSSION OF THE 

RESULTS

The window based method proposed had been 

tested on different simulated signals, all of which 

have a sampling frequency of 10 kHz and a timespan 

of 5 seconds. We tested the triangular window, 

described by the following Eq. 4: 

1
t a

w t
a

 (4) 

where a = T/2 is half the length of the signal. The 

first signal tested is given by the following Eq. 5, 

and is reported in Fig. 1a along with its windowed 

version (Fig. 1b). 
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s1(t) is the sum of an amplitude modulated (AM) 

sine, a cosine and a parabolic term: this is done to 

evaluate the effect of windowing when the data is 

composed of simple oscillating functions and a 

nonlinear “trend”. In this case, applying the direct 

mirror extension will fail due to the parabolic term 

induced boundaries asymmetry.  From this signal the 

standard EMD extracts three IMFs (Fig. 2a – Fig. 

2c)) while the proposed method with triangular 

window extract 4 IMFs (Fig. 2d – Fig. 2g). It can be 

seen how in this case the windowing doesn’t corrupt 

the IMFs far from the endpoints while some swing 

still occurs. It is also noticeable how the second IMF 

from the standard EMD (Fig. 2b) suffers the end-

effect probably due to some mode-mixing with the 

nonlinear (parabolic) trend, while the proposed 

method doesn’t fail (Fig. 2e). In fact, the trend 

extracted by the standard EMD (Fig. 2c) is distorted 

near the right endpoint to compensate for the 

previous IMF corruption whilst the window method 

is not affected by the cited phenomenon, but the 

latter spreads the  trend in two components (Fig. 2f  

–  Fig.2g). Finally, notice that the triangular window 

discontinuity at the center point is reflected in the 

residual IMFs (Fig. 2f – Fig. 2g) extracted by the 

proposed method. 

a)

b)

Figure 1. s1(t) (a) and its triangular windowed version (b) 



DIAGNOSTYKA, Vol. 14, No. 1 (2013)

COTOGNO, COCCONCELLI, RUBINI, A Window Based Method To Reduce The End-Effect… 

6

a) d)

b) e)

c) f)

g)

Figure 2. In the left column (a-c) the IMFs extracted by the standard EMD from s1(t), whilst in the right column 

(d-g) the corresponding IMFs extracted by the proposed windowing method 

The second simulated signal s2(t) is given by the 

following Eq. 6 and it is illustrated in Fig. 3a along 

with its windowed counterpart (Fig 3b): 

2 sin 2 0.5 sin 2 20

sin 2 2t

s t t t

e t t
 (6) 

s2(t) embodies an AM sine, an exponential chirp and 

a parabolic term in order to evaluate the performance 

of the algorithm in presence of a strongly nonlinear 

component. Since in the proposed method we 

implemented the standard EMD we expect also 

strong mode-mixing in the IMFs due to the chirp. In 

the EMD jargon the mode-mixing denotes the split 

of a signal component among two or more IMFs. A 

characteristic example is indeed the chirp signal, its 

frequency components cover a wide band spectrum 

and they consequently appear in different IMFs. In 

Fig. 4 are reported the results of the simulation; 

standard EMD extracts four IMFs and also does 

windowed EMD. It can be seen how the IMFs 

behavior is very similar between the two methods 

also in presence of strong mode-mixing and 

nonlinear components. 
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a)

b)

Figure 3. Simulated signal s2(t) (a) and its triangular windowed version (b) 

a) e)

b) f)

c) g)

d) h)

Figure 4. In the left column (a-d) the IMFs extracted by the standard EMD from s2(t), whilst in the right  

column (e-h) the corresponding IMFs extracted by the proposed windowing method 



DIAGNOSTYKA, Vol. 14, No. 1 (2013)

COTOGNO, COCCONCELLI, RUBINI, A Window Based Method To Reduce The End-Effect… 

8

The main difference in the two IMF sets is in the 

third IMF since in the window method’s one (Fig. 

4g) there is more swing at the beginning than the 

standard EMD counterpart (Fig. 4c): however, this 

IMF seems to be a mode-mixing product of EMD.  

The last simulated signal tested, s3(t), is reported 

in Fig. 5a along with its windowed version (Fig. 5b) 

and is given by the following Eq. 7:  

3

1

sin 2 0.1 sin 2 20

cos 2 10 2 4t

s t t t

e t t t t
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s3(t) embodies an AM sine, a fading cosine function 

and a polynomial function acting as a nonlinear 

trend; this is done in order to compare the 

performances of  the proposed algorithm in case of 

this kind of signal mixture from the ability of 

signal’s component retrieval point of view. The 

obtained IMFs are reported in Fig. 6. 

In this case again mode-mixing is present, as 

expected. The first IMFs are very similar, but the 

one gathered by the windowed EMD (Fig. 6e) offers 

a more precise representation of the original 

component near the left endpoint in terms of its 

decaying amplitude dynamics.  The second IMF 

from the standard EMD (Fig. 6b) shows what at a 

first glance could be judged as a swing resulting 

from the end-effect: in our view, the swing comes 

from mode-mixing of the fading cosine with the 

nonlinear (cubic) trend which is subsequently spread 

in the following IMFs (Fig. 6c – Fig. 6d). The 

second IMF, windowed version, (Fig. 6f) shows a 

similar effect but much more limited in amplitude: 

in fact, the following IMFs (Fig. 6g – Fig. 6h) 

represents in a better fashion the nonlinear trend. 

The latter is split in two components probably 

because of its dynamics (i.e.: oscillations) indeed the 

zero crossings in the third IMF (Fig. 6g) occur near 

t = 2 and t = 4 which are the real component’s 

zeroes, while almost no trace of the same 

information could be retrieved from the standard 

EMD correspondent third and fourth IMF (Fig. 6c – 

Fig. 6d respectively). 

a)

b)

Figure 5. Simulated signal s3(t) (a) and its triangular windowed version (b) 
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a) e)

b) f)

c) g)

d) h)

Figure 6. In the left column (a-d) the IMFs extracted by the standard EMD from s3(t), whilst in the right column 

(e-h) the corresponding IMFs extracted by the proposed windowing method 

5. CONCLUSIONS 

The presented signal windowing method for 

EMD end-effect reduction works well: cases have 

been showed where end-effect or mode-mixing 

induced swings in IMFs are strongly reduced. 

Swings still occur near the endpoint, but their 

amplitude is smaller than in standard EMD. In some 

cases, the proposed method produced better quality 

IMFs in presence of strong mode-mixing. The 

simulations performed (here we reported a few 

extracts because of available space) have shown in 

general a more precise representation of the low 

frequency component(s) particularly in case of 

asymmetry of the data. These results are obtained 

while maintaining the EMD data adaptability since 

no a priori assumption is made on the signal (or 

parts of it), in contrast with other techniques dealing 

with EMD end-effect which do (explicitly or 

implicitly). In our view, another important result 

comes from the use of the local orthogonality of the 

IMFs which allows us to compensate for the signal 

windowing by multiplication by the window 

reciprocal after the IMF extraction. We think that 

this behavior of EMD should be taken in 

consideration by the researchers who are working on 

mathematical base for EMD. In fact, since EMD is 

defined only as an algorithm it was not certain if this 

operation (i.e., windowing and post EMD 

windowing compensating) could have produced 

consistent results. Moreover, we think that a mode-

mixing avoiding technique could also improve the 

performance of windowed EMD particularly in 

presence of divergent trends near the endpoints. 

6. ACKNOWLEDGEMENTS 

The authors wish to thank the Inter Departmental 

Research Center INTERMECH MoRE of the 

University of Modena and Reggio Emilia for the 

financial support. 



DIAGNOSTYKA, Vol. 14, No. 1 (2013)

COTOGNO, COCCONCELLI, RUBINI, A Window Based Method To Reduce The End-Effect… 

10

REFERENCES

[1]. Y. Deng, W. Wang, C. Qian, Z. Wang, D. Dai, 

Boundary-processing-technique in EMD 

method and Hilbert transform. Chinese Science 

Bulletin Vol. 46, No. 1 (2001). 

[2]. P. Flandrin, G. Rilling, P. Goncalves, 

Empirical mode decomposition as a filter bank.

Signal Processing Letters, IEEE, 11(2) (2004) 

112–114.

[3]. Q. Gai, X.-J. Ma, H.-Y. Zhang, Y.-K. Zou, 

New method for processing end effect in local 

wave method. J. Dalian Univ. Technol. 42 (1) 

(2001) 115–117. 

[4]. N. E. Huang, M. Wu, S. R. Long, S. P. Shen, 

W. Qu, P. Gloersen, K. L. Fan, A confidence 

limit for the empirical mode decomposition and 

Hilbert spectral analysis. Proc. R. Soc. Lond. 

A, 459 (2003)2317–2345.

[5]. N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, 

H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, 

H. H. Liu, The empirical mode decomposition 

and Hilbert spectrum for nonlinear and non-

stationary time series analysis. Proc. R. Soc. 

London, Ser. A 454 (1998) 903–995.

[6]. N. E. Huang, Z. Wu, G. Wang , X. Chen, F. 

Qiao, On intrinsic mode function, Adv. in 

Adaptive Data Analysis. Vol. 2, No. 3 (2010) 

277–293.

[7]. Y. S. Lee, S. Tsakirtzis, A. F. Vakakis, L. A. 

Bergman, D.M. McFarlan, Physics-based

foundation for empirical mode decomposition.

Adv. in Adaptve Data Analysis, Vol. 47, No. 

12 (2009) 2938–2963. 

[8]. D. Lin, Z. Guo, F. An, F. Zeng, Elimination of 

end effects in empirical mode decomposition by 

mirror image coupled with support vector 

regression. Mechanical Systems and Signal 

Processing 31 (2012) 13–28 

[9]. D. Ren, S. Yang, Z. Wu, G. Yan, Evaluation of 

the EMD end effect and a window based 

method to improve EMD. International 

Technology and Innovation Conference, 

November 6-7 (2006) China. 

[10]. Q. Wu, S. D. Riemenschneider, Boundary

extension and stop criteria for empirical mode 

decomposition. Adv. in Adaptive Data 

Analysis, Vol. 2, No. 2 (2010) 157–169. 

Michele COTOGNO was 

born in Italy on October 23rd,

1984. He is a research 

fellower in Applied 

Mechanics at the University 

of Modena and Reggio 

Emilia, Reggio Emilia, Italy. 

His research interests include 

bearings, CBM and machine 

diagnostics. 

Marco COCCONCELLI

was born in Italy on 

November 9th, 1977. He is a 

researcher in Applied 

Mechanics at the University 

of Modena and Reggio 

Emilia, Reggio Emilia, Italy. 

His research interests 

include machine diagnostics, 

bearings, CBM and vibration 

analysis.

Riccardo RUBINI was born 

in Italy on July 11th, 1965. He 

is an Associate Professor in 

Applied Mechanics at the 

University of Reggio Emilia 

(Italy). His research interests 

include machines dynamics, 

advanced techniques for the 

monitoring and diagnostics of 

mechanical components. 


