PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multicriteria model for analyzing the impact of EU GHG limiting policies on economic growth: The case of Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a macroeconomic model and the multicriteria approach are used to analyze the impact of the enforced greenhouse gas (GHG) emission limits on economic development and future consumption in a small open economy country, like Poland. The following questions are considered: how economic transformation, connected with adjustment of the national economy to the policy limiting GHG emission would proceed? what may be the consequences of the enforced emission limits for the economic development and future consumption? The model answers these questions by presenting time trajectories, describing the evolution of three sectors, which influence GHG emission, namely those producing intermediary inputs, consumer goods, and investment goods. The sectors interact via markets of the relevant goods. The model takes into account the inertial behavior of the large-scale dynamic system, as well as social and political resistance to changes. It also indicates technological changes in the form of time-varying shares of two technologies, namely the GHG emission intensive and the GHG emission avoiding ones. Two competing objectives are considered in the multicriteria analysis, i.e. maximization of consumption and minimization of GHG emission. The costs of pursuing the GHG limiting policy are assessed in terms of lost consumption. The multicriteria analysis is performed with the use of the derived representation of the Pareto optimal outcomes. Computational results are presented for the case of Poland. They show three phases in a transition period, early growth on the basis of existing assets in the initial years, a depression phase, where technological changes mainly occur, and a period of renewed growth. They are followed by a steady development under new emission conditions.
Rocznik
Strony
55--83
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warszawa, Poland
autor
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warszawa, Poland
autor
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warszawa, Poland
  • Warsaw School of Information Technology, Warszawa, Poland
Bibliografia
  • [1] Akashi O., Hanaoka T. (2012) Technological feasibility and costs of achieving a 50% reduction of global GHG emissions by 2050: mid- and long-term perspectives. Sustainability Science 7, 139-156.
  • [2] Allen T. J. (1977) Managing the Flow of Technology Transfer and the Dissemination of Technological Information within R&D Organizations. MIT Press, Cambridge, MA.
  • [3] Antoszewski M., Boratynski J., Zachl od-Jelec M., W´ojtowicz K., Cygler M., Jeszke R., Pyrka M., Sikora P., Bohringer Ch., Gaska J., Jorgensen E., Kasek L., Kiuila O., Malarski R., Rabiega W. (2015) CGE Model PLACE. MF Working Paper Series, Ministry of Finance, Republic of Poland. No 22-2015, December 2015.
  • [4] Bukowski M., Kowal P. (2010) Large scale, multi-sector model as a climate policy assessment tool. IBS Working Paper #03/2010, Institute for Structural Research.
  • [5] Central Statistical Office (2005) Input–Output Table at Basic Prices in 2005. Warsaw, Poland.
  • [6] Chai A. (2017) Interdisciplinary and evolutionary perspectives on managing the transition to a sustainable economy. Journal of Bioeconomics 19, 1-5.
  • [7] Edenhofer O., Knopf B., Leimbach M., Bauer N. (2010) ADAM’s modeling comparison project - intentions and prospects. Energy Journal 31, 7-10.
  • [8] Eom J., Edmonds J., Krey V., Johnson N., Longden T., Luderer G., Riahi K., van Vuuren D. P. (2015) The impact of near-term climate policy choices on technology and emission transition pathways. Technological Forecasting & Social Change 90:73-88.
  • [9] Frisch R. (1965) Theory of Production. D. Reidel Publishing Company, Dordrecht – Holland.
  • [10] Gadomski J., Nahorski Z. (2011) Optimum Emission of GHG and Economic growth. Regularized Results. In: Welfe A. (ed.) Modelling Economies in Transition 2010. AMFET, Lodz, Poland, 83–102.
  • [11] Goulder L. H., Schneider S. H. (1999) Induced technological change and the attractiveness of CO2 abatement policies. Resource and Energy Economics 21:211-253.
  • [12] Grimaud A., Rouge L. (2008) Environment, directed technical change and economic policy. Environmental and Resource Economics 41(4) 439-463.
  • [13] Harrison P. A., Holman I. P., Berry P. M. (2015) Assessing crosssectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project. Climatic Change 128(3-4) 153-167.
  • [14] Keller K., Boler B. M., Bradford D. F. (2004) Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management 48, 723-742.
  • [15] Krey V., Luderer G., Clarke L. E., Kriegler E. (2014) Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios. Climatic Change 123, 369-382.
  • [16] Kriegler E., Riahi K., Bosetti V., Pantelis C., Petermann N., van Vuuren D. P., Weyant J. P., Edenhofer O. (2015) Introduction to the AMPERE model intercomparison studies on the economics of climate stabilization. Technological Forecasting & Social Change 90, 1-7.
  • [17] Kriegler E., Weyant J. P., Blanford G. J., Krey V., Clarke L., Edmonds J., Fawcett A., Luderer G., Riahi K., Richels R., Rose S. K., Tavoni M., van Vuuren D. P. (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353-367.
  • [18] Krus L. (2011) Multicriteria cooperative decisions, computer-based support methods. Monograph Series: Systems Research, Systems Research Institute, Polish Academy of Sciences, Warsaw (in Polish).
  • [19] Krus L. and Bronisz P. (2000) Cooperative game solution concepts to a cost allocation problem. European Journal of Operational Research 122(2) 258-271.
  • [20] Luderer G., Bosetti V., Jakob M., Leimbach M., Steckel J. C., Waisman H., Edenhofer O. (2012) The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Climatic Change 114, 9-37.
  • [21] Maksimov V. I., Rozenberg V. L. (2015) Mathematical modeling of the consequences of Russia’s participation in the Kyoto Protocol: an optimization model approach. Computational Mathematics and Modeling 26(1) 35-51.
  • [22] Maksimov V., Schrattenholzer I., Minullin Y. (2006) Computer analysis of the sensitivity of the integrated assessment model MERGE 5I. In: Wyrzykowski R. et al. (eds.) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, 3911, Springer, Berlin Heidelberg, 583–590.
  • [23] Manne A. S., Mendelson R., Richels R. (1995) MERGE – a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23(1) 17–34.
  • [24] Manne A. S., Richels R. G. (1992) Buying Greenhouse Insurance. MIT Press, Cambridge, MA.
  • [25] Manne A., Richels R. (2004) US rejection of the Kyoto Protocol: the impact on compliance costs and CO2 emissions. Energy Policy 32, 447–454.
  • [26] Mason A. J. (2012) OpenSolver - An Open Source Add-in to Solve Linear and Integer Progammes in Excel. In: Klatte D., Luthi H. J., Schmedders K. (eds.) Operations Research Proceedings 2011. Operations Research Proceedings. Springer, Berlin, Heidelberg.
  • [27] Nahorski Z., Ravn H. F. (2000) A review of mathematical models in economic environmental problems. Annals of Operations Research 97, 165201.
  • [28] Nordhaus W. D. (1994) Managing the Global Commons: The Economics of Climate Change. MIT Press, Cambridge, MA.
  • [29] Nordhaus W. D., Boyer J. (1999) Roll the DICE Again: Warming the World: Economics Models of Global Warming (Internet Edition) Yale University.
  • [30] Olecka A., Bebkiewicz K., Debski B. (2014) National Inventory Report 2014. GHG Inventories for Poland for the years 1988-2012. The National Centre of Emission Management, Warsaw, Poland (in Polish).
  • [31] Peretto P. F. (2008) Effluent taxes, market structure, and the rate and direction of endogenous technical change. Environmental and Resource Economics 39, 113–138.
  • [32] Pizer W. A. (1994) The optimal choice of climate change policy in the presence of uncertainty. Resource and Energy Economics 21, 255–287.
  • [33] Riahi K., Gr¨ubler A., Nakicenovic N. (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting & Social Change 74, 887–935.
  • [34] Riahi K., Rubin E. S, Taylor M. R. Schrattenholzer L., Hounshel D. (2004) Technological learning for carbon capture and sequestration technologies. Energy Economics 26, 539–564.
  • [35] Sarr M., Noailly J. (2017) Innovation, diffusion, growth and the environment: taking stock and charting new directions. Environmental Resource Economics 66, 393–407.
  • [36] Stern N. (2007) The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge, UK.
  • [37] Weyant J., Kriegler E. (2014) Preface and introduction to EMF 27. Climatic Change 123, 345–352.
  • [38] Wierzbicki A. P. (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum 8, 73–87.
  • [39] Wierzbicki A. P., Makowski M., Wessels J. (2000) Model-based Decision Support Methodology with Environmental Applications. Kluwer Academic Press, Dordrecht, Boston.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d393461-4ed5-41b5-9e99-9c187a4e4dcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.