PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of stabilization controls of a forklift vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the control designs for an autonomous forklift vehicle that drive the vehicle from an initial configuration to a final one. Three stabilization controls, which are chained-form time-varying control, sigma-transformed discontinuous control, and navigation-variables-based discontinuous control, for a forklift vehicle are compared by simulations. The sigma-transformed and navigation-variables-based discontinuous controls provide fast convergence motions from an initial to a final configuration, while the time-varying-based control provides oscillatory motion and slow convergence. The sigma-transformed discontinuous control has a set of discontinuous points in which, from a practical point of view, the control signals can blow up if a vehicle enters the set. The navigation-variables-based control, which also has a discontinuous point at the final configuration, does not produce blown up control signals since its boundedness nature. Discussion on the implementation of control algorithm is elucidated for the three stabilization controls for the forklift vehicle.
Rocznik
Strony
181--188
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Faculty of Industrial Technology, Instrumentation and Control Research Group, Insititut Teknologi Bandung, Ganesa 10, Bandung 40132
Bibliografia
  • 1. Abbasi W., Rehman F.U., Shah I., Rauf A. (2019), Stabilizing control algorithm for nonholonomic wheeled mobile robots using adaptive integral sliding mode, International Journal of Robotics and Automation, 34(2), 1-8.
  • 2. Aicardi M., Casalino G., Bicchi A., Balestrino A. (1995), Closed loop steering of unicycle-like vehicles via Lyapunov techniques, IEEE Robotics and Automation Magazine, 2(1), 27–35.
  • 3. Astolfi A. (1996), Discontinuous control of nonholonomic systems, Systems Control Letters, 27, 37–45.
  • 4. Baranowski L.M., Siwek L.M. (2018), Use of 3D simulation to design theoretical and real pipe inspection mobile robot model, Acta Mechanica et Automatica, 12(3), 232–236.
  • 5. Brockett R.W. (1983), Differential geometric control theory - asymptotic stability and feedback stabilization, MA: Birkhäuser.
  • 6. Hashimoto W., Yamashita Y., Kobayashi K. (2019), Asymptotic stabilization of nonholonomic four-wheeled vehicle with steering limitation, IEICE Transactions on Fundamental Electronics, Communications, and Computer Sciences, E102.A (1), 227–234.
  • 7. Hespanha J.P., Morse A.S. (1999), Stabilization of nonholonomic integrators via logic-based switching, Automatica, 35(3), 385–393.
  • 8. Kłosiński J., Janusz J. J., Nycz R. (2015), The impact of the FLC controller’s settings on the precision of the positioning of a payload transferred by a mobile crane, Acta Mechanica et Automatica, 8(4), 181–184.
  • 9. Lamiraux F., Laumond J.P. (2000), Flatness and small-time controllability of multibody mobile robots: Application to motion planning, IEEE Transactions on Automatic Control, 45(10), 1878–1881.
  • 10. Morin P.C., Samson C. (2009), Control of nonholonomic mobile robots based on the transverse function approach, IEEE Transactions on Robotics, 25(5), 1058–1073.
  • 11. Muralidharan V., Mahindrakar, A.D. (2014), Position stabilization and waypoint tracking control of mobile inverted pendulum robot, IEEE Transactions on Control Systems Technology, 22(6), 2360–2367.
  • 12. Murray R.M., Sastry S.S. (1993), Nonholonomic motion Planning: Steering using Sinusoids, IEEE Transactions on Automatic Control, 38(5), 700–716.
  • 13. Pomet J.-B., Samson C. (1994), Time-varying exponential stabilization of nonholonomic systems in power form, Proceedings of the IFAC Symposium of Robust Control Design, Rio de Janeiro, 447–452.
  • 14. Ryu J.C., Agrawal S.K. (2010), Planning and control of underactuated mobile manipulators using differential flatness, Autonomous Robots, 29(1), 35–52.
  • 15. S’anchez-Torres J.D., Defoort D.M., Muñoz-Vázquez A.J. (2019), Predefined-time stabilization of a class of nonholonomic systems, International Journal of Control, DOI: 10.1080/00207179.2019.1569262.
  • 16. Samson C. (1995). Control of chained systems application to path following and time-varying point stabilization of mobile robots, IEEE Transactions on Automatic Control, 40(1), 64–77.
  • 17. Sankaranarayanan V. Mahindrakar A.D. (2013). Configuration constrained stabilization of a wheeled mobile robot-theory and experiment, IEEE Transactions on Control Systems Technology, 21(1), 275–280.
  • 18. Siegwart R., Nourbakhsh I. R. (2004), Introduction to Autonomous Mobile Robot, Cambridge, MA: MIT Press.
  • 19. Soueres P., Laumond J.P. (1996). Shortest paths synthesis for a car-like robot, IEEE Transactions on Automatic Control, 41(5), 672–688.
  • 20. Tamba T., Hong B., Hong K.-S. (2009), A path following control of an unmanned autonomous forklift. International Journal of Control, Automation, and Systems, 7(1), 113–122.
  • 21. Tang C. P., Miller P.T., Krovi V.N., Ryu J.-C., Agrawal S.K. (2008), Kinematic control of a nonholonomic wheeled mobile manipulator - a differential flatness approach, Proceedings of the ASME Dynamic Syst. Control Conference, Ann Arbor, Michigan, USA, 2008–2253.
  • 22. Virgalaivan I., Lipták T., Miková, Ľ. (2018), Snake robot locomotion patterns for straight and curved pipe, Journal of Mechanical Engineering, 68(2), 91–104.
  • 23. Wang Y., Miao Z., Zhong H., Pan Q. (2015), Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach, IEEE Transactions on Control Systems Technology, 23(4), 1440–1450.
  • 24. Wei S., Uthaichana K., Žefran M. DeCarlo R. (2013), Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage, IEEE Transactions on Control Systems Technology, 21(6), 2181–2193.
  • 25. Widyotriatmo A., Hong K.-S. (2008). Decision making framework for autonomous vehicle navigation, Proceedings of the SICE Annual Conference-International Conference on Instrumentation, Control and Information Technology, Tokyo, Japan, 20-22 August, 1002– 1007.
  • 26. Widyotriatmo A., Hong K.-S. (2012), Switching algorithm for robust configuration control of a wheeled vehicle, Control Engineering Practice, 20(3), 315–325.
  • 27. Widyotriatmo A., Hong K.-S. (2015), Configuration control of an autonomous vehicle under nonholonomic and field-of-view constraints, International Journal of Imaging and Robotics, 15(3), 126–139.
  • 28. Xiao H., Li Z., Yang C., Zhang L., Yuan P., Ding, L., Wang T. (2017), Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization, IEEE Transactions on Industrial Electronics, 65(4), 3437–3446.
  • 29. Xie X.-J., Li G.-J. (2019), Finite-time output-feedback stabilization of high-order nonholonomic systems, International Journal of Robust and Nonlinear Control, 29(9), 2695–2711.
  • 30. Yue M.Y., Ning M. Y., Zhao X., Zong G. (2019), Point stabilization control method for WIP vehicles based on motion planning, IEEE Transactions on Industrial Informatics, 25(6), 3368–3378.
Uwagi
This work was supported by Indonesian Ministry of Research, Technology and Higher Education and Institut Teknologi Bandung.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d34dbce-7687-459f-b413-3cba480d6080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.