PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aktywność biologiczna i metody syntezy sulfonamidów (przegląd literaturowy)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biological activity and synthesis of sulfonamide derivatives: a brief review
Języki publikacji
PL EN
Abstrakty
PL
Sulfonamidy (SO2-NH-) są lekami powszechnie stosowanymi ze względu na ich trwałość i tolerancję przez organizm człowieka. Stanowią dobrą grupę zabezpieczającą amin czyniąc je związkami aktywnymi biologicznie. Aktywność ta jest wynikiem obecności różnych grup funkcyjnych. Szerokie zastosowanie sulfonamidów stało się przyczyną poszukiwania nowych metod ich syntezy. Artykuł przedstawia krótki przegląd literaturowy najbardziej popularnych i nowoczesnych metod syntezy pochodnych sulfonamidowych.
EN
Sulfonamides (SO2-NH-) have been the center of the drug structures as they are quite stable and well tolerated in human beings. The sulfonamides are very important protected intermediates of amines with several types of biological activities. Activity of the sulfonamides is due to different functional groups present in them. Due to the broad applicability of sulfonamides, it is desirable to find general and effective methods for their synthesis. Different methods have been adopted to synthesize sulfonamides. Here is a short review which provides several of the most common and recent methods of sulfonamide synthesis.
Czasopismo
Rocznik
Strony
620--628
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
  • Instytut Chemii, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
autor
  • Instytut Chemii, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
autor
  • Instytut Chemii, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
autor
  • Instytut Chemii, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Bibliografia
  • 1. Hansch C., Sammes P. G., Taylor J. B.: Comprehensive Medicinal Chemistry, Vol. 2, Pergamon Press: Oxford 1990, Chap. 7.1.
  • 2. Kanda Y., Kawanishi Y., Oda K., Sakata T., Mihara S., Asakura K., Kanemasa T., Ninomiya M., Fujimoto M., Kanoike T.: Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorg. & Med. Chem. 2001, 9, 897.
  • 3. Stokes S. S., Albert R., Buurman Ed T., Andrews B., Shapiro A. B., Green O. M., McKenzie A. R., Otterbein L. R.: Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine-1-phosphate acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl sulfonamides. Bioorg. & Med. Chem. Lett. 2012, 22, 7019.
  • 4. Chibale K., Haupt H., Kendrick H., Yardley V., Saravanamuthu A., Fairlamb A. H., Croft S. L.: Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. & Med. Chem. Lett. 2001, 11, 2655.
  • 5. Rahavi Ezabadi I., Camoutsis C., Zoumpoulakis P., Geronikaki A., Soković M., Glamočilija J., Čirič A.: Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg. & Med. Chem. 2008, 16, 1150.
  • 6. Kennedy J. F., Thorley M.: Pharmaceutical Substances, 3rd ed., Kleeman A., Engel J., Kutscher B., Reichert D.: Thieme: Stuttgart, 1999.
  • 7. Serradeil-Le Gal C.: An overview of SR121463, a selective non-peptide vasopressin V2 receptor antagonist. Cardiovascular Drug Rev. 2001, 19, 201.
  • 8. Natarajan A., Guo Y., Harbinski F., Fan Y.-H., Chen H., Luus L., Diercks J., Aktas H., Chorev M., Halperin J. A.: Novel Arylsulfoanilide−Oxindole Hybrid as an Anticancer Agent That Inhibits Translation Initiation. J. Med. Chem. 2004, 47, 4979.
  • 9. Vullo D., De Luca V., Scozzafava A., Carginale V., Rossi M., Supuran CT., Capasso C.: The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides. Bioorg. & Med. Chem., 2013, 21, 4521
  • 10. Wilson C. O., Gisvold O., Block J. H.: Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Block J., Beale J. M., Eds., Lippincott Williams and Wilkins: Philadelphia, 2004.
  • 11. Levin J. I., Chen J. M., Du M. T., Nelson F. C., Killar L. M., Skala S., Sung A., Jin G., Cowling R., Barone D., March C. J., Mohler K. M., Black R. A., Skotnicki J. S.: Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1’ group. Bioorg. & Med. Chem. Lett. 2002, 12, 1199.
  • 12. Kim D.-K., Lee J. Y., Lee N., Ryu D. H., Kim J.-S., Lee S., Choi J.-Y., Ryu J.-H., Kim N.-H., Im G.-J., Choi W.-S., Kim T.-K.: Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5’-sulfonamide moiety of a phenyl ring. Bioorg. & Med. Chem. 2001, 9, 3013.
  • 13. Hu B., Ellingboe J., Han S., Largis E., Lim K., Malamas M., Mulvey R., Niu C., Oliphant A., Pelletier J., Singanallore T., Sum F.-W., Tillett J., Wong V.: Novel (4-Piperidin-1-yl)-phenyl Sulfonamides as Potent and Selective Human b3 Agonists. Bioorg. & Med. Chem. 2001, 8, 2045.
  • 14. Ma T., Fuld A.D., Rigas J.R., Hagey A.E., Gordon G.B., Dmitrovsky E., Dragnev K.H.: A Phase I Trial and in vitro Studies Combining ABT-751 with Carboplatin in Previously Treated Non-Small Cell Lung Cancer Patients Chemotherapy 2012, 58, 321.
  • 15. Dekker M.: In Protease Inhibitors in AIDS Therapy, Ed.: Ogden R. C., Flexner C. W.: New York, NY, Basel 2001.
  • 16. Roush W. R., Gwaltney S. L., Cheng J., Scheidt K. A., McKerrow J. H., Hansell E.: Vinyl Sulfonate Esters and Vinyl Sulfonamides: Potent, Irreversible Inhibitors of Cysteine Proteases. J. Am. Chem. Soc. 1998, 120, 10994.
  • 17. Lawrence H. R., Kazi A., Luo Y., Kendig R., Ge Y., Jain S., Daniel K., Santiago D, Guida W. C., Sebti S. M.: Synthesis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors. Bioorg. & Med. Chem. 2010, 18, 5576.
  • 18. Fujita T., Hansch C.: Analysis of the Structure-Activity Relationship of the Sulfonamide Drugs Using Substituent Constants. J. Med. Chem. 1967, 10, 991.
  • 19. Anand N, Sulfonamides and Sulfons. In Wolff M E (ed.). Burger’s Medicinal Chemistry, Vol 2, 5th ed, New York, Wiley- Interscience, 1996, Chapter 33.
  • 20. Abdulhakeem Alsughayer, Abdel-Zaher A Elassar, Seham Mustafa, Fakhreia Al Sagheer: Synthesis, Structure Analysis and Antibacterial Activity of New Potent Sulfonamide Derivatives. J. Biomaterials and Nanobiotechnology. 2011, 2, 144.
  • 21. Ozbek N, Katircioğlu H, Karacan N, Baykal T.: Synthesis, characterization and antimicrobial activity of new aliphatic sulfonamide. Bioorg. & Med Chem. 2007, 15, 5105.
  • 22. Eshghia H., Rahimizadeh M., Zokaei M., Eshghi S., Eshghi S., Faghihi Z., Tabasi Z. Kihanyan M.: Synthesis and antimicrobial activity of some new macrocyclic bis- sulfonamide and disulfides. Eur. J. Chem. 2011, 2, 47.
  • 23. Humlian, J., Gobec, S.: Synthesis of N-phthalimido β-aminoethanesulfonyl chlorides: the use of thionyl chloride for a simple and efficient synthesis of new peptidosulfonamide building blocks. Tetrahedron Lett. 2005, 46, 4069.
  • 24. Fujita S.: A Convenient Preparation of Arenesulfonyl Chlorides from the Sodium Sulfonates and Phosphoryl Chloride/ Sulfolane. Synthesis 1982, 423.
  • 25. Barco A., Benetti S., Pollini P., Tadia R.: A New Preparation of Sulfonyl Chlorides via Pyridinium Sulfonates. Synthesis 1974, 877.
  • 26. Bahrami K., Khodaei M. M., Soheilizad M.: Direct Conversion of Thiols to Sulfonyl Chlorides and Sulfonamides. J. Org. Chem. 2009, 74, 9287.
  • 27. Bahrami K., Khodaei M. M., Soheilizad M.: Direct conversion of thiols and disulfides into sulfonamides. Tetrahedron Lett. 2010, 51, 4843.
  • 28. Veisi H., Ghorbani-Vaghei R., Hemmati S., Mahmoodi J.: Convenient One-Pot Synthesis of Sulfonamides and Sulfonyl Azides from Thiols Using N-Chlorosuccinimide. Synlett, 2011, 16, 2315.
  • 29. Maleki B.; Hemmati S., Tayebee R., Salemi S., Farokhzad Y, Baghayeri M., Zonoz F. M., Akbarzadeh E.; Moradi R., Entezari A., Abdi M. R., Ashrafi S. S., Taimazi F, Hashemi M.: One-Pot Synthesis of Sulfonamides and Sulfonyl Azides from Thiols using Chloramine-T. Helvetica Chimica Acta 2013, 96, 2147.
  • 30. Wright S. W., Hallstrom K. N.: A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols. J. Org. Chem. 2006, 71, 1080.
  • 31. Bonk J. D., Amos D. T., Olson S. J.: Convenient One Pot Synthesis of Sulfonamides from Thiols using Trichloroisocyanuric Acid. Synthetic Comm. 2007, 37, 2039.
  • 32. De Luca L., Giacomelli G.: An Easy Microwave-Assisted Synthesis of Sulfonamides Directly from Sulfonic Acids. J. Org. Chem. 2008, 73, 3967.
  • 33. Rad M. N. S., Khalafi-Nezhad A., Asrari Z., Behrouz S., Amini Z., Behrouz M.: One-Pot Synthesis of Sulfonamides from Primary and Secondary Amine Derived Sulfonate Salts Using Cyanuric Chloride. Synthesis 2009, 23, 3983.
  • 34. Kijrungphaiboon W., Chantarasriwong O., Chavasir W.: Cl3CCN/PPh3 and CBr4/PPh3: two efficient reagent systems for the preparation of N-heteroaromatic halides. Tetrahedron Lett. 2012, 53, 674.
  • 35. Pandya R., Murashima T., Tedeschi L., Barrett A. G. M.: Facile One-Pot Synthesis of Aromatic and Heteroaromatic Sulfonamides. J. Org. Chem. 2003, 68, 8274.
  • 36. Woolven H., Gonzáles-Rodríguez C., Marco I., Thompson A. L., Willis M. C.: DABCO-Bis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Org. Lett. 2011, 13, 4876.
  • 37. Revankar G. R., Hanna N. B., Ramasamy K., Larson S. B., Smee D. F., Finch R. A., Avery T. L., Robins R. K.: Synthesis and In Vivo antitumor and antiviral activities of 2′-deoxyribofuranosyl and arabinofuranosyl nucleosides of certain purine-6-sulfenamides, sulfinamides and sulfonamides. J. Heterocycl. Chem. 1990, 27, 909.
  • 38. Guram A. S., Buchwald S. L.: Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901.
  • 39. Shekhar S., Dunn T. B., Kotecki B. J., Montavon D. K., Cullen S. C.: A General Method for Palladium-Catalyzed Reactions of Primary Sulfonamides with Aryl Nonaflates. J. Org. Chem. 2011, 76, 4552.
  • 40. Rosen B. R., Ruble J. C., Beauchamp T. J., Navarro A.: Mild Pd-Catalyzed N-Arylation of Methanesulfonamide and Related Nucleophiles: Avoiding Potentially Genotoxic Reagents and Byproducts. Org. Lett. 2011, 13, 2564
  • 41. Watson A. J. A., Maxwell A. C., Williams J. M. J.: Borrowing Hydrogen Methodology for Amine Synthesis under Solvent-Free Microwave Conditions. J. Org. Chem. 2011, 76, 2328.
  • 42. Chan J., Baucom K. D., Murry J. A.: Rh(II)-Catalyzed Intermolecular Oxidative Sulfamidation of Aldehydes: A Mild Efficient Synthesis of N-Sulfonylcarboxamides. J. Am. Chem. Soc. 2007, 129, 14106.
  • 43. Lam P. Y. S., Vincent G., Clark C. G., Deudon S., Jadhav P. K.: Coppercatalyzed general C-N and C-O bond cross-coupling with arylboronic acid. Tet. Lett. 2001, 42, 3415.
  • 44. Deng W., Liu L., Zhang C., Liu M., Guo Q. X.: Copper-catalyzed crosscoupling of sulfonamides with aryl iodides and bromides facilitated by amino acid legends. Tet. Lett. 2005, 46, 7295.
  • 45. Tang X., Huang L., Qi Ch., Wu X., Wu W., Jiang H.: Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. Chem. Commun. 2013, 49, 6102.
  • 46. Yan J., Li J., Cheng D., Mild and Efficient Indium Metal Catalyzed Synthesis of Sulfonamides and Sulfonic Esters. Synlett, 2007, 16, 2501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d33e51f-716f-43ef-abc9-b329b0868107
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.