PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd metod otrzymywania materiałów plazmonicznych oraz wybranych alternatywnych materiałów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Overview of fabrication methods of plasmonic materials and selected alternative materials for plasmonic applications
Języki publikacji
PL EN
Abstrakty
PL
Praca przedstawia przegląd literaturowy dotyczący technologii otrzymywania materiałów plazmonicznych oraz propozycji materiałów alternatywnych do obecnie stosowanych materiałów w obszarze plazmoniki. W analizie literaturowej przedstawiono porównanie metod top-down i bottom-up do otrzymywania materiałów plazmonicznych w postaci warstw, jak również jako materiałów objętościowych. Dodatkowo wybrano potencjalnie najkorzystniejsze alternatywne materiały plazmoniczne, które mogą zastąpić współcześnie używane materiały konwencjonalne stosowane w dziedzinie plazmoniki.
EN
In this work we reviewed the fabrication methods of both plasmonic materials and novel alternative materials for plasmonics. The analysis of the literature enabled a comparison of 'top-down' and 'bottom-up' preparation methods of plasmonic materials, in the form of layers as well as bulk materials. In addition, potentially the best alternative plasmonic materials which can replace conventional materials for plasmonics are proposed.
Rocznik
Strony
18--29
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01 - 919 Warszawa
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01 - 919 Warszawa
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01 - 919 Warszawa
Bibliografia
  • [1] Barnes W. L., Dereux A., Ebbesen T. W.: Surface plasmon subwavelength optics, Nature, 2003, 424, 824 - 830
  • [2] Schuller J. A., Barnard E. S., Cai W., Chul Jun Y., et al.: Plasmonics for extreme light concentration and manipulation, Nature Mater., 2010, 9, 193
  • [3] Maier S. A.: Plasmonics: Fundamentals and applications, Springer, 2007
  • [4] Hryciw A., Ch. Jun Y., Brongersma M.: Electrifying plasmonics on silicon, Nature Materials, 2010, 9, 3 - 4
  • [5] Stipe B. C. et al.: Magnetic recording at 1,5 Pb m-2 using an integrated plasmonic antenna, Nature Photon., 2010, 4, 484 - 488
  • [6] Atwater H. A., Polman A.: Plasmonics for improved photovoltaic devices, Nature Materials, 2010, 9, 205 - 213
  • [7] Lal S., Clare S. E. , Halas N. J.: Nanoshell-enabled photothermal cancer therapy: impending clinical impact, Accounts Chem. Res., 2008, 41, 1842 - 1851
  • [8] Challener W. A. et al.: Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nature Photon., 2009, 3, 220 - 224
  • [9] Stockman M., Bergman D. J.: Surface Plasmon amplification by simulated emission of radiation: quantum generation of coherent surface plasmon in nanosystems, Phys. Rev. Lett., 2003, 90, 2, 1 - 4
  • [10] Noginov M. A., Zhu G., Belgrave A. M., Bakker R., Shalaev V. M., Narimanov E. E., Stout S., Herz E., Suteewong T. , Wiesner U.: Demonstration of a spaser-based nanolaser, Nature, 2009, 460, 1110 - 1112
  • [11] Henzie J. , Lee M. H., Odom T. W.: Multiscale patterning of plasmonic metamaterials, Nature Nanotechnology, 2007, 2, 549 - 554
  • [12] Anker J. N., et al.: Biosensing with plasmonic nanosensors, Nature Materials, 2008, 7, 442 – 453
  • [13] Sönnichsen C. et al.: A molecular ruler based on Plasmon coupling of single gold and silver nanoparticles, Nature Biotechnol, 2005, 23, 741 - 745
  • [14] Drude B.:. Zur Elektronentheorie der Metalle, Ann. Phys, 1900, 1, 566 - 613
  • [15] Maxwell J. C.: Philosophical transactions of the Royal Society of London, 1865, 155, 459 – 512
  • [16] Fedotov V.: Alternative route to low-loss plasmonics, META, 2012
  • [17] Bohren C. F., Huffman D.: Absorption and scattering of light by small particles, WILEY-VCH Verlag Gmbh & Co. 2004
  • [18] Kreibig U., Vollmer M.: Optical properties of metals cluster, Springer-Verlag, 1995, 25, 535
  • [19] Naik G. V., Shalaev V. M., Boltasseva A.: Alternative plasmonic materials: beyond gold and silver, Adv. Mater. 2013, 25, 3264 – 3294
  • [20] Johnson P., Christy R.: Optical constants of the noble metals, Phys. Rev. B, 1972, 6, 4370 – 4379
  • [21] West P. R., Ishii S., Naik G. V., Emani N. K., Shalaev V. M. , Boltasseva A.: Searching for better plasmonic materials, Laser Photonics Rev., 2010, 4, 6, 795 – 808
  • [22] Liu Z., Lee H., Xiong Y., Sun C., Zhang X.: Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, 2007, 315, 1686
  • [23] Haugh F., Soderstrom T., Cubeo O., Terrazzoni-Daudrix V., Ballif C.: Plasmonic absorption in textured silver back reflectors on thin film solar cells, J. Appl. Phys, 2008, 104, 064509
  • [24] Ferry V. E., . Verschuuren M. A, Li H. B. T., Verhagen E., Walters R. J., Schropp R. E. I., Atwater H. A., Polman A. : Light trapping in ultrathin plasmonic solar cells, Opt. Express, 2010, 18A237 – A245
  • [25] Pillai S., Catchpole K. R., Trupke T., Green M. A.: Surface plasmon enhanced silicon solar cells, J. Appl. Phys., 2007, 101093105
  • [26] Beck F. J., Polman A., Catchpole K. R.: Tunable light trapping for solar cells using localized surface plasmons, J. Appl. Phys., 2009, 105114310
  • [27] Wei H., Ratchford D., Li X. Q., Xu H. X., Shih C. K. : Propagating surface plasmon induced photon emission from quantum dots., Nano Lett., 2009, 94168 – 71
  • [28] Homola J.: Present and future of surface Plasmon resonance biosensors, Anal. Bioanal. Chem., 2003, 377528 – 39
  • [29] Homola J., Yee S. S., Gauglitz G.: Surface Plasmon resonance sensors: review, Sensors ActuatorsB, 1999, 543 – 15
  • [30] Lindquist N. C., et al.: Engineering metallic nanostructures for plasmonics and nanophotonics, Rep. Prog. Phys., 2012, 75, 036501
  • [31] Naik G. V., Boltasseva A.: A comparative study of semiconductor-based plasmonic metamaterials, Metamaterials, 2011, 5, 1 – 7
  • [32] Tassin P., Koschny T., Kafesaki M., Soukoulis C. M.: A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics, Nature Photonics, 2012, 6, 259 - 264
  • [33] Soukoulis C. M., Wegener M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nature Photonics, 2011, 5, 523 - 530
  • [34] Feigenbaum E., Diest K., and Atwater H.: Unity-order index change in transparent conducting oxides at visible frequencies, Nano Lett., 2010, 10, 2111 – 2116
  • [35] Park D., Cha T., Lim K., Cho H., Kim T., Jang S., Suh Y., Misra V., Yeo I., Roh J., Park J., Yoon H.: Robust ternary metal gate electrodes for dual gate CMOS devices. „Electron Devices Meeting, 2001. IEDM ’01. Technical Digest. International” 30 – 36
  • [36] Naik G. V., Schroeder J. L., Ni X., Kildishev A. V., Sands T. D., Boltasseva A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Optical Materials Express, 2012, 2, 4, 478 - 489
  • [37] Boltasevva A., Naik G.V., Kim J.: Oxides and nitrides as alternative plasmonic materials in the optical range Optical Materials Express, 2011, 1, 6, 1090 - 1099
  • [38] Naik G. V., Liu J., Kildishev A. V., Shalaev V. M., Boltasseva A.: Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, Proceedings of the National Academy of Sciences, 2012, 109, 23, 8834 - 8838
  • [39] Grigorenko A. N., Polini M., Novoselov K. S.: Graphene plasmonics – optics in flatland, Nature Photonics, 2012, 6, 749 - 758
  • [40] Okamoto K., Niki I., Shvartser A., Narukawa Y., Mukai T., Scherer A.: Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature Materials, 2004, 3, 9, 601 - 605
  • [41] Minami T.: New n-type transparent conducting oxides, MRS Bull., 2000, 25, 8, 38 – 44
  • [42] Gajc M., Surma H. B., Klos A., Sadecka K., Orlinski K., Nikolaenko A. E., Zdunek K., Pawlak D. A.: Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites, Adv. Funct. Mat., 2012, 23, 27, 3443 - 3451
  • [43] Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K.: Two- dimensional atomic crystals, Proc. Nat. Acad. Sci. USA, 2005, 102, 10451
  • [44] Katsnelson M. I., Novoselov K. S., Geim A. K.: Chiral tunnelling and the Klein paradox in graphene, Nature Physics, 2006, 2, 620 ‐ 625
  • [45] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. : Electric field effect in atomically thin carbon films, Science, 2004, 306, 666 – 669
  • [46] Jablan M., Soljacic M., Buljan H.: Plasmons in graphene: fundamental properties and potential applications, Proceedings of the IEEE, 2013, 101, 7, 1689 – 1704
  • [47] Liu N. et al.: Three-dimensional photonic metamaterials at optical frequencies, Nature Materials, 2008, 7, 31 - 37
  • [48] Nagpal P. et al.: Ultrasmooth pattened metals for plasmoninc and metamaterials, Science, 2009, 325, 5940, 594 - 597
  • [49] Wurtz G. A., Pollard R., Hendren W., Wiederrecht G. P., Gosztola D. J., . Podolskiy V. A, Zayats A.V.: Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality, Nature Nanotechnology, 2011, 6, 107 - 111
  • [50] Lindquist N. C.: Engineering metallic nanostructures for plasmonics and nanophtotnics, Rep. Prog. Phys, 2012, 75, 036501
  • [51] Wu W. et al.: Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography, Appl. Phys. A, 2007, 87, 2, 143 - 150
  • [52] Chen Y. et al.: Nanoimprint lithography for planar chiral photonic meta-materials, Microelectron. Eng. 2005, 78-79, 612 - 617
  • [53] .Zaumsei J et al.: Three-dimensional nanostructures formed by nanotransfer printing, Nano Lett. 2003, 3, 9, 1223 – 1227
  • [54] Deubel M. et al.: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications, Nature Materials, 2004, 3, 444 - 447
  • [55] Radke A. et al.: Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating, Adv. Mater., 2011, 23, 3018 - 3021
  • [56] Lindquist N. C. et al.: Engineering metallic nanoparticles for plasmonics and nanophtonics, Rep. Prog. Phys., 2012, 75, 036501
  • [57] Donelly T., Krishnamurthy S., Carney K., McEvoy N., Lunney J. G.: Pulsed laser deposition of nanoparticle films of Au, Applied Surface Science, 2007, 254, 4, 1303 - 1306
  • [58] Chung-Ting K., Yin-Yi H., Ching-Hsiang C., Jay S., Miin-Jang C.: Enormous plasmonic enhancement and suppressed quenching of luminescence from nanoscale ZnO films by uniformly dispersed atomic-layer- deposited platinum with optimized spacer thickness, J. Phys. Chem. C, 2013, 117, 49, 26204 – 26212
  • [59] Santiago K., Mundle R., Samantaray C. B., Bahoura M., Pradhan A. K.: Nanopatterning of atomic layer deposited Al:ZnO films using electron beam lithography for waveguide applications in the NIR region, Optical Materials Express, 2012, 2, 12, 1743 - 1750
  • [60] Bates F. S., Fredrickson G. H.: Block copolymers – designer soft materials, Phys. Today, 1999, 52, 2, 32
  • [61] Mai Y., Eisenberg A.: Self-assembly of block copolymers, Chem. Soc. Rev., 2012, 41, 5969 - 5985
  • [62] Kuzyk A. et al.: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, 2012, 483, 311 - 314
  • [63] Rothemund P. W. K.: Folding DNA to create nanoscale shapes and patterns, Nature, 2006, 440, 297 - 302
  • [64] Bigioni P. et al.: Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nature Mater., 2006, 5, 4, 265 - 270
  • [65] Rockstuhl C. et al.: Design of an artificial three- dimensional composite metamaterial magnetic resonances in the visible range of the electromagnetic spectrum, Phys. Rev. Lett., 2007, 99, 017401
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d2f4c54-d4f1-4b74-80f2-185783cc26b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.