PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling of lumbar spine equipped with fixator

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anatomical model of fragment of lumbar spine and rod fixator with screw attachment were made. Numerical analyses (use of finite element method) were executed. Results show that stresses in the analyzed structure depend on the size of the fixator used. Authors suggest further research.
Rocznik
Strony
257--262
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Comarch, Kraków, Małopolskie, Poland
  • Department of Machine Design and Technology, AGH University of Science and Technology, Kraków, Małopolskie, Poland
autor
  • Department of Machine Design and Technology, AGH University of Science and Technology, Kraków, Małopolskie, Poland
Bibliografia
  • 1. Gzik MK. Human spine biomechanics. Gliwice: Silesian University of Technology press, 2007.
  • 2. Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP. Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitized CT images. Eur Spine J 2000;9:242–8.
  • 3. Jalalian A, Gibson I, Tay EH. Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform 2013;1:401–11.
  • 4. Tadeusiewicz R. Biocybernetics – methodological fundamentals for biomedical engineering. Warszawa: PWN, 2013.
  • 5. Mouraa DC, Barbosab JG. Real-scale 3D models of the scoliotic spine from biplanar radiography without calibration objects. Comput Med Imag Grap 2014;38:580–85.
  • 6. Nabhani F, Wake M. Computer modelling and stress analysis of the lumbar spine. J Mater Process Tech 2002; 127:40–47.
  • 7. Awłasiewicz T, Kędzior K, Krzesiński G. Finite element method in the study a set of stabilizing segment of the spine. In: Zarzycki D, Ciupik LF, editors. DERO System: development of techniques for the surgical treatment of spine. Zielona Góra, 1997:115–22.
  • 8. Ryniewicz AM. Identification, modeling and biotribology of human joints. Kraków: AGH University of Science and Technology press, 2011.
  • 9. Ryniewicz AM, Skrzat J, Ryniewicz A, Ryniewicz W, Walocha J. Geometry of the articular facets of the lateral atlanto-axial joints in the case of occipitalization. Folia Morphol 2010;69:147–53.
  • 10. Pitzen T, Geisler F, Matthis D, Müller-Storz H, Barbier D, Steudel W-I, et al. A finite element model for predicting the biomechanical behavior of the human lumbar spine. Control Eng Pract 2002;10:83–90.
  • 11. Jaramillo H, Gómez L, Garcia J. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Acta Bioeng Biomech 2015;17:15–24.
  • 12. Cronin D. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J Mech Behav Biomed 2014;33:55–66.
  • 13. Lavillea A, Laportea S, Skallia W. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. J Biomech 2009;42:1409–15.
  • 14. Ezquerro F, Simón A, Prado M, Pérez A. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation. Med Eng Phys 2004;26:11–22.
  • 15. Wanga W, Zhangb H, Sadeghipoura K, Barana G. Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: a finite element study. Med Eng Phys 2013;35:357–64.
  • 16. Ha SK. Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc. Med Eng Phys 2006;28:534–41.
  • 17. Shahmohammadia M, Shirazia HA, Karimia A, Navidbakhsha M. Finite element simulation of an artificial intervertebral disk using fiber reinforced laminated composite model. Tissue Cell 2014;46:299–303.
  • 18. Kurutza M, Oroszváryb L. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase. J Biomech 2010;43:433–41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d2dee8a-fbf1-435c-b50e-91aafd6458fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.