PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the meshing of cycloidal gears

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cycloidal drives belong to the group of planetary gear drives. The article presents the process of modelling a cycloidal gear. The full profile of the planetary gear is determined from the following parameters: ratio of the drive, eccentricity value, the equidistant (ring gear roller radius), epicycloid reduction ratio, roller placement diameter in the ring gear. Joong-Ho Shin’s and Soon-Man Kwon’s article (Shin and Know, 2006) was used to determine the profile outline of the cycloidal planetary gear lobes. The result was a scatter chart with smooth lines and markers, presenting the full outline of the cycloidal gear.
Rocznik
Strony
137--140
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Department of Mechanical Engineering, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Białystok, Poland
  • Bialystok University of Technology, Department of Mechanical Engineering, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Dai H., Wang X. (2005), Thermo-electro-elastic transient responses in piezoelectric hollow structures, International Journal of Solids and Structures, 42, 1151-1171.
  • 2. Filippo de Monte (2006), Multi-layer transient heat conduction using transition time scales, International Journal of Thermal Science, 45, 882–892.
  • 3. Liu G., Qu J. (1998), Transient Wave Propagation in a Circular Annulus Subjected to Transient Excitation on Its Outer Surface, Journal of the Acoustical Society of America, 104, 1210–1220.
  • 4. Lu X., Tervola P., Viljanen M. (2006), Transient analytical solution to heat conduction in composite circular cylinder, International Journal of Heat and Mass Transfer, 49, 341–348.
  • 5. Onyshko L.I., Senyuk M.M. (2009), Stressed state of a hollow twolayer cylinder under dynamic loads, Material Science, 45, 55–61.
  • 6. Savruk M., Onyshko L., Senyuk M. (2008), A plane dynamic axisymmetric problem for a hollow cylinder, Materials Science, 1-9.
  • 7. Sladek V., Sladek J., Zhang C. (2008), Computation of stresses in non-homogeneous elastic solids by local integral equation method: a comparative study, Computational Mechanics, 41, 827–845.
  • 8. Sneddon I. (1951), Fourier transforms, McCraw-Hill Book Company, New York.
  • 9. Sulym H., Hutsaylyuk V., Pasternak Ia., Turchyn I. (2013), Stressstrain state of an elastic rectangular plate under dynamic load, Mechanika, 19, 620–626.
  • 10. Sulym H., Turchyn І. (2014), Axisymmetric quasistatic thermal stressed state in a half space with coating, Journal of Mathematical Science, 198, 103–117.
  • 11. Theotokoglou E., Stampouloglou I. (2008), The radially nonhomogeneous elastic axisymmentric problem, International Journal of Solids and Structures, 45, 6535–6552.
  • 12. Turchyn I., Turchyn O. (2013), Transient plane waves in multilayered half-space, Acta Mechanica et Automatica, 7, 53-57.
  • 13. Wang X., Lu G., Guillow S. (2002), Stress wave propagation in orthotropic laminated thick-walled spherical shells, International Journal of Solids and Structures, 39, 4027-4037.
  • 14. Yin X.C., Yue Z.Q. (2002), Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse, Journal of Applied Mechanics, 69, 825–835.
  • 15. Zhang X., Hasebe N. (1999), Elasticity solution for a radially nonhomogeneous hollow cylinder, Journal of Applied Mechanics, 66, 598–606.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d2a8721-d11d-4789-a012-7733f4eba0d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.