Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A recent development in the material studies provides beneficial application of lightweight alloys such as aluminium, magnesium as well as composites and metal matrices. The alloys are experimentally improved by increasing hardness in the ballistics testing using projectiles,makes them viable for the areas such as aerospace, military, defence, automobiles and so on. So the study is made on different approaches. First, by comparing different types of non-ferrous alloys and projectiles regarding sizes, structures. Second, the materials with heat treatment are also studied for investigating the hardness property by overcoming successful penetration on non-ferrous alloys. Third, material to be improvised by use of numerical studies such as 3D models, empirical models and software such as ANSYS, ABAQUS and AUTODYN, etc. Finally, the aim of this paper is to review the recent progress ballistic studies of lightweight materials and to provide a best choice of material for further on-going research.
Czasopismo
Rocznik
Tom
Strony
7--14
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Affiliated to Anna University, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Affiliated to Anna University, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Affiliated to Anna University, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Affiliated to Anna University, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Affiliated to Anna University, Tamil Nadu, India
Bibliografia
- 1. T. L. Jones, (2018). Update on ballistic characterization of the scalability of magnesium alloy AMX602, in Minerals, Metals and Materials Series, vol. Part F7, pp. 157–163, doi: 10.1007/978-3-319-72332-7_24
- 2. M. Abdullah, S. Abdullah, M. Omar, Z. Sajuri, and M. Risby, (2018) Observing the behaviour of reinforced magnesium alloy with carbon-nanotube and lead under 976 m/s projectile impact, J. Mech. Eng., vol. 5, no. 2, pp. 129–141
- 3. M. Rodríguez-Millán, A. Vaz-Romero, A. Rusinek, J. A. Rodríguez-Martínez, and A. Arias, (2014), Experimental Study on the Perforation Process of 5754-H111 and 6082-T6 Aluminium Plates Subjected to Normal Impact by Conical, Hemispherical and Blunt Projectiles, Exp. Mech., vol. 54, no. 5, pp. 729–742, doi: 10.1007/s11340-013-9829-z
- 4. H. Sabouri, H. Ahmadi, and G. H. Liaghat, (2011), Ballistic impact perforation into GLARE targets: Experiment, numerical modelling and investigation of aluminium stacking sequence, Int. J. Veh. Struct. Syst., vol. 3, no. 3, pp. 178–183, doi: 10.4273/ijvss.3.3.05
- 5. B. Ezhil Vendhan, K. L. Hari Krishna, and A. K. Lakshminarayanan, (2015), Numerical Simulation on Effect of Impact Velocity and Target Thickness in Magnesium Alloy AZ31B, Appl. Mech. Mater., vol. 787, pp. 291295 doi: 10.4028/www.scientific.net/amm.787.291
- 6. P. Sharma, P. Chandel, V. Bhardwaj, M. Singh, and P. Mahajan, (2018) Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles, Thin-Walled Struct., vol. 126, no. May, pp. 205–219, doi: 10.1016/j.tws.2017.05.014
- 7. C. E. Anderson, Deformation and Damage of Two Aluminum Alloys from Ballistic Impact, (2003) vol. 1298, no. 2002, pp. 1298–1301, doi: 10.1063/1.1483777
- 8. J. K. Holmen, J. Johnsen, S. Jupp, O. S. Hopperstad, and T. Børvik, (2013). Effects of heat treatment on the ballistic properties of AA6070 aluminium alloy, Int. J. Impact Eng., vol. 57, pp. 119–133, 2013, doi: 10.1016/j.ijimpeng. 02.002
- 9. M. A. Iqbal, S. H. Khan, R. Ansari, and N. K. Gupta, (2012). Experimental and numerical studies of double-nosed projectile impact on aluminum plates, Int. J. Impact Eng., vol. 54, pp. 232–245, doi: 10.1016/ j.ijimpeng.11.007
- 10. E. Özşahin and S. Tolun, (2010), Influence of surface coating on ballistic performance of aluminum platessubjected to high velocity impact loads, Mater. Des., vol. 31, no.3, pp. 1276t1283, doi:10.1016/j.matdes.2009.09.018
- 11. M. R. M. Suki, (2017). A Numerical Study on Aluminum Plate Response under Low Velocity Impact, Int. J. Eng., vol. 30, no. 3, pp. 440–448, 2017, doi: 10.5829/idosi.ije.30.03c.14
- 12. T. Szymczak, K. Makowska, Z. L. Kowalewski, and P. Lasota, (2019), an influence of impact energy on magnesium alloy behaviour, Int. J. Mech. Mater. Des. doi: 10.1007/s10999-019-09461-1
- 13. J. Xiao and D. W. Shu, (2015) Compressive behavior and constitutive analysis of AZ31B magnesium alloy overwide range of strain rates and temperatures, Met. Mater. Int., vol. 21, no. 5, pp. 823–831, doi: 10.1007/s12540-015-5120-4
- 14. F. Zhao, Y. L. Li, T. Suo, W. D. Huang, and J. R. Liu, (2009), Dynamic compressive behavior and damage mechanism of cast magnesium alloy AZ91, Zhongguo Youse Jinshu Xuebao/Chinese J. Nonferrous Met., vol. 19, no. 7, pp. 1163–1168, Jul., doi: 10.4028/www.scientific.net/amr.1120-1121.1124
- 15. Kurzawa, D. Pyka, K. Jamroziak, M. Bocian, P. Kotowski, and P. Widomski, (2018) Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al 2 O 3 particles, Compos. Struct. vol. 201, no. April, pp. 834–844, doi: 10.1016/j.compstruct.2018.06.099
- 16. H. Zarei, M. Sadighi, and G. Minak,(2016). Ballistic analysis of fiber metal laminates impacted by flat and conical impactors, Compos. Struct., vol. 161, pp. 65–72, 2017, doi: 10.1016/j.compstruct.11.047
- 17. Q. N. Zhang, X. W. Zhang, G. X. Lu, and D. Ruan, (2018), Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: An experimental study, J. Sandw. Struct. Mater., vol. 20, no. 7, pp. 861–884, doi: 10.1177/1099636216682166
- 18. J. L. Zinszner, P. Forquin, and G. Rossiquet, (2015), Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact, Int. J. Impact Eng., vol. 76, pp. 9–19, doi: 10.1016/ j.ijimpeng.2014.07.007
- 19. H. Karakoç, Ş. Karabulut, and R. Çıtak, (2018) Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy, Compos. Part B Eng., vol. 148, pp.68.80, doi: 10.1016/j.compositesb.2018.04.043
- 20. Seyed Yaghoubi and B. Liaw, (2012), Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies, Compos. Struct., vol. 94, no. 8, pp. 2585–2598, doi: 10.1016/j.compstruct.2012.03.004
- 21. M. F. Abdullah, S. Abdullah, M. Z. Omar, Z. Sajuri, and R. M. Sohaimi, (2015), Failure observation of the AZ31B magnesium alloy and the effect of lead addition content under ballistic impact, Adv. Mech. Eng., vol. 7, no. 5, pp. 1–13, doi: 10.1177/1687814015585428
- 22. M. Grujicic, B. Pandurangan, A. Arakere, C. F. Yen, and B. A. Cheeseman, (2013), Friction stir weld failuremechanisms in aluminum-armor structures under ballistic impact loading conditions, J. Mater. Eng. Perform., vol. 22, no. 1, pp. 30–40,doi: 10.1007/s11665-012-0239-7
- 23. E. Yeter, (2018), Investigation of Ballistic ImpactResponse of Aluminum Alloys Hybridized with Kevlar/Epoxy Composites, J. Polytech., vol. 0900, no. 1, pp. 219–227, doi: 10.2339/politeknik.417758
- 24. M. Di Sciuva, C. Frola, and S. Salvano (2003), Low and high velocity impact on Inconel 718 casting plates: Ballistic limit and numerical correlation, Int. J. Impact Eng., vol. 28, no. 8, pp. 849–876, doi: 10.1016/S0734-743X(02)00156-2
- 25. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, and M. Klosak, (2019) Perforation Tests of Aluminum Alloy Specimens for a Wide Range of Temperatures Using High-Performance Thermal Chamber - Experimental and Numerical Analysis, IOP Conf. Ser. Mater. Sci. Eng., vol. 491, no. 1, doi: 10.1088/1757-899X/491/1/012027
- 26. K. Senthil, B. Arindam, M. A. Iqbal, and N. K. Gupta, Ballistic Response of 2024 Aluminium Plates Against Blunt Nose Projectiles, Procedia Eng., vol. 173, pp. 363–368, 2017, doi: 10.1016/j.proeng.2016.12.030
- 27. X. P. Liang, H. Z. Li, L. Huang, T. Hong, B. Ma, and Y. Liu, Microstructural evolution of 2519-T87 aluminum alloy obliquely impacted by projectile with velocity of 816 m/s, Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 6, pp. 1270–1279, 2012, doi: 10.1016/S1003-6326(11)61315-0
- 28. T. Demir, M. Übeyli, and R. O. Yildirim (2008), Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile, Mater. Des., vol. 29, no. 10, pp. 2009–2016,doi: 10.1016/j.matdes.2008.04.010
- 29. Z. L. Chang, W. L. Zhao, G. P. Zou, and H. Q. Sun, (2019), Simulation of the Lightweight Ceramic/Aluminum Alloy Composite Armor for Optimizing Component Thickness Ratios, Strength Mater., vol. 51, no. 1, pp. 11–17, doi: 10.1007/s11223-019-00044-1
- 30. B. Zhang, J. T. Jiang, L. Liu, G. A. Li, W. Z. Shao, and L. Zhen, (2019), Highly localized shear deformation in a Mg–Al–Mn alloy subjected to ballistic impact, Vacuum, vol. 169, doi: 10.1016/j.vacuum.2019.108868
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d22ad7c-d2cc-429a-9a02-fc82047c99a8