PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study on the difference of color space conversion based on table look-up method and neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective To study the conversion model of RGB color space to CIE1976 L*a*b* color space with higher accuracy, which provides some value for the fields of computer color matching, color detection, and color reproduction. Methods The method of three-dimensional look-up table method and back propagation (BP) neural network are proposed, and the effect of the model built under the two methods is evaluated under the calculation of CIE1976 L*a*b* and CIE2000 color difference by NCS color card data. Results Under the calculation of CIE1976 L*a*b* color difference, the average color difference under the four interpolation methods of the three-dimensional look-up table is within 3, and the average color difference of the BP neural network algorithm is 1.8720. Under the calculation of CIE2000 color difference, the average color difference of the four interpolation methods of the three-dimensional look-up table drops within 1, and the average color difference of the BP neural network also shows a downward trend, and the specific value is 1.3449. Conclusions According to the result obtained by the research method, the color difference of the tetrahedral interpolation method is the smallest among the four interpolation methods of the three-dimensional look-up table method under both color difference formulas. Whether it is the three-dimensional look-up table method or the BP neural network, the model obtained by the CIE2000 color difference formula is the best. In general, for the two methods, the BP neural network method is more convenient and faster, and the color difference effect is also desirable.
Czasopismo
Rocznik
Strony
69--83
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
autor
  • School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
Bibliografia
  • [1] BAO X., SONG W., LIU S., Research on color space conversion model from CMYK to CIE-LAB based on GRNN, [In] Paul M., Hitoshi C., Huang Q. [Eds.], Image and Video Technology. PSIVT 2017, Lecture Notes in Computer Science, Vol. 10749, Springer, Cham. https://doi.org/10.1007/978-3-319-75786-5_21
  • [2] HAN X.J., SHI J.S., HUANG X.Q., A study of multiple regression models for color printer characterization, Optical Technology 37(1), 2011: 25-30.
  • [3] KANAMORI K., FUMOTO T., KOTERA H., A color transformation algorithm using prisminterpolation, IS&T 8th International Congress on Advances in Non-Impact Printing Technologies, 1992: 477-482.
  • [4] XU B.H., Research on display color space conversion model based on 3D lookup table interpolation algorithm, Packaging Engineering 32(5), 2011: 77-79.
  • [5] ZHAO T.M., LIU S.D., Inverse color space conversion algorithm based on cube induction, Packaging Engineering, 38(17), 2017: 200-205.
  • [6] BOLDRIN E., SCHETTINI R., Faithful cross-media color matching using neural networks, Pattern Recognition 32(3), 1999: 465-470. https://doi.org/10.1016/S0031-3203(98)00037-5
  • [7] XU Y.F., LIU W.Y., WU B., et al., School of Printing & Packing Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China College of Precision Instruments and Opto-electronics Engineering, Tianjin University. Tianjin 300072, China. Application of a Neural Network in Color Conversion[C]. 2006: 89-93.
  • [8] ZHAO T.M., Research on color space conversion algorithm based on 3D look-up table method, Strategic Support Force Information Engineering University, Zhengzhou, 2018.
  • [9] ZHANG Q., A color space transformation model based on RBF neural network, Packaging Engineering, 30(5), 2009: 71-73.
  • [10] LI P.F., NING Y.W., JING J.F., Research on the detection of fabric color difference based on T‐S fuzzy neural network, Color Research and Application, 42(5), 2017: 609-618. https://doi.org/10.1002/col.22113
  • [11] MACDONALD L., Color space transformation using neural networks, [In] Proc. IS&T 27th Color and Imaging Conference, 2019: 153-158. https://doi.org/10.2352/issn.2169-2629.2019.27.29
  • [12] SARAVANAN G., YAMUNA G., Real-time implementation of various color space models, International Journal of Circuits and Architecture Design 2(3/4), 2016: 258-271.
  • [13] YANG J.K., LI P.F., SU Z.B., et al., An improved limit learning machine based color space conversion method for digital printing, Advances in Lasers and Optoelectronics 58(05), 2021: 343-348.
  • [14] ZHAO C.F., Theoretical and practical research on computer color matching, Xi’an University of Technology, Xi’an, 2004.
  • [15] LIU C.H., LI Z., XU C., et al., Deep neural network-based BRDF model for common materials of spatial targets, Journal of Optics 37(11), 2017: 358-367.
  • [16] GONG J.M., LIU F., WU Y.J., et al., Design scheme of Raman fiber amplifier based on neuronal network and artificial bee colony algorithm, Journal of Optics 41(20), 2021: 24-32.
  • [17] HU Z.Q., Research on automatic temperature recognition method of oscillating paint based on camera color characterization, Beijing University of Technology, Beijing, 2020.
  • [18] HAN X.H., Research on the quality inspection method of color prints based on image processing technology, Xi’an University of Technology, Xi’an, 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d1e9082-3d16-4b37-9954-c91248497f1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.