PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ferroresonance in distribution systems – state of the art

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ferrorezonans w sieciach rozdzielczych – stan wiedzy
Języki publikacji
EN
Abstrakty
EN
Recently, there are increasing interest in studying the ferroresonance phenomenon, due to the various problems it causes to power quality and the destruction of network parts, insulators and consumer devices. As the ferroresonance leads to a significant increase in voltage or/and current with harmonic presence, both of which represent a threat to the stability of the electrical network and its parts. The influence of ferroresonance on the distribution system is crucial because the distribution system is the network's closest part to the consumer, and any effect it has will have an impact on the customer. This paper presents a state of the art of ferroresonance problem. The most visible signals for ferroresonance and analytical methods used to indicate its occurrence are presented. The investigation of ferroresonance in the radial distribution system and the effect of integrating Distributed Generation (DG) into the distribution zone on this phenomenon are presented. The latest methods used to mitigate and prevent ferroresonance are discussed. Furthermore a technique for suppressing ferroresonance is implemented. The ferroresonance in power transformer and the effect of load variation on it will be presented. PSCAD/EMTDC software is used to simulate the study.
PL
Ostatnio obserwuje się coraz większe zainteresowanie badaniem zjawiska ferrorezonansu, ze względu na różne problemy, jakie powoduje w zakresie jakości zasilania oraz niszczenia elementów sieci, izolatorów i urządzeń konsumenckich. Ponieważ ferrorezonans prowadzi do znacznego wzrostu napięcia lub/i prądu z obecnością harmonicznych, które to oba stanowią zagrożenie dla stabilności sieci elektrycznej i jej części. Wpływ ferrorezonansu na system dystrybucyjny jest kluczowy, ponieważ system dystrybucyjny jest częścią sieci najbliższą konsumentowi, a każdy jego wpływ będzie miał wpływ na klienta. Artykuł przedstawia aktualny stan wiedzy na temat ferrorezonansu. Przedstawiono najbardziej widoczne sygnały dla ferrorezonansu oraz metody analityczne służące do wskazania jego występowania. Przedstawiono badania ferrorezonansu w promieniowym układzie dystrybucyjnym oraz wpływ integracji Generacji Rozproszonej (DG) w strefę dystrybucji na to zjawisko. Omówiono najnowsze metody stosowane do łagodzenia i zapobiegania ferrorezonansowi. Ponadto wdrażana jest technika tłumienia ferrorezonansu. Przedstawiony zostanie ferrorezonans w transformatorze mocy i wpływ na niego zmian obciążenia. Do symulacji badania stosuje się oprogramowanie PSCAD/EMTDC.
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 135 poz., rys., tab.
Twórcy
  • Electrical Power & Machines Department, High Institute of Engineering, El-Shorouk Academy, Cairo, Egypt
  • Electrical Power & Machines Department, High Institute of Engineering, El-Shorouk Academy, Cairo, Egyp
  • Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
Bibliografia
  • [1] S. P. Ang, Ferroresonance simulation studies of transmission systems, PHD, Faculty of Engineering and Physical Sciences. Manchester: the university of manchester, 2010.
  • [2] S. Poomima and C. P. Sugumaran, “Identification of ferroresonance phenomena using wavelet transforms,” in 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016, pp. 126–131.
  • [3] V. Arun kumar, S. Elango, M. Prabu, B. Ramraj, “Transient Overvoltages And Its Prevention And Protection,” " International Journal of Engineering Trends and Technology., vol. 68, no. 3, pp. 22–25, 2020.
  • [4] A. Akinrinde, A. Swanson, and R. Tiako, “Investigation of Temporary Overvoltage on Microgrid with Emphasis on Ferroresonance,” Int. J. Eng. Res. Africa, vol. 39, pp. 32–46, 2018.
  • [5] P. H. B. de S. Pinheiro, M. L. C. Vidal, F. F. da Rocha, B. W. França, and M. Z. Fortes, “Ferroresonance evaluation on capacitor voltage transformers,” Electr. Eng., vol. 102, no. 3,pp. 1775–1783, 2020.
  • [6] V. Valverde, J. Mazón, G. Buigues, and I. Zamora, “Ferroresonance suppression in voltage transformers,” Prz. Elektrotechniczny, vol. 88, no. 1 A, pp. 137–140, 2012.
  • [7] M.Yang, W. Sima, P. Duan, M. Zou, D. Peng, Q. Yang, Q. Duan,, “Electromagnetic transient study on flexible control processes of ferroresonance,” Int. J. Electr. Power Energy Syst., vol. 93, pp. 194–203, 2017.
  • [8] S. J. Kruger and J. A. de Kock, “Ferroresonance: A Review of the Phenomenon and Its Effects,” 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, 2021, pp. 1–6.
  • [9] S. Hassan, M. Vaziri, and S. Vadhva, “Review of ferroresonance in power distribution grids,” 2011 IEEE International Conference on Information Reuse Integration, 2011, pp. 444–448.
  • [10] L. V Bykovskaya and V. Bykovskiyi, “Simulation of a Voltage Transformer with a Magnetic Core Made of Amorphous Steels,” 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2020, pp. 1–5.
  • [11] L. Zhao, X. Chen, L. Ye, Y. Yang, S. Wang, and B. Yu, “Research on Ferroresonance of Electromagnetic Voltage Transformer in 550kV HGIS,” 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), 2019, pp. 34–38.
  • [12] V. Valverde, G. Buigues, A. Mazon, I. Zamora, and I. Albizu, “Ferroresonant Configurations in Power Systems,” Renew. energy power Qual. J., pp. 474–479, 2012.
  • [13] M. Xu and L. Zhu, “Ferro-resonance Overvoltage Identification Using Earth Capacitance and Excitation Inductance of Ratio Method,” 2017 International Conference on Advances in Materials, Machinery, Electrical Engineering (AMMEE), 2017, pp. 335–359.
  • [14] M. Mikhak-Beyranvand, B. Rezaeealam, J. Faiz, and A. Rezaei-Zare, “Impacts of ferroresonance and inrush current forces on transformer windings,” IET Electr. Power Appl., vol. 13, no. 7, pp. 914–921, 2019.
  • [15] S. Rezaei, “Prevention of False Operation of Distance Relay in Ferroresonance,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 5, 2016.
  • [16] S. Rezaei, “Impact of Ferroresonance on protective relays in Manitoba Hydro 230 kV electrical network,” 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), 2015, pp. 1694–1699.
  • [17] N. Yang, Y. Han, C. Wu, R. Jia, and C. Liu, “Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system,” Chinese Phys. B, vol. 26, no. 8, p. 80503, 2017.
  • [18] K. Solak, W. Rebizant, and M. Kereit, “Detection of Ferroresonance Oscillations in Medium Voltage Networks,” Energies, vol. 13, no. 16, p. 4129, 2020.
  • [19] D. Zhang, X. Hu, H. Zhang, H. Yu, and Y. Shen, “Ferroresonance Analysis of 500kV GIS Substation during Commissioning Process,” IOP Conf. Ser. Earth Environ. Sci., vol. 514, p. 42042, 2020.
  • [20] W. Sima, M. Zou, M. Yang, D. Peng, and Y. Liu, “Saturable reactor hysteresis model based on Jiles–Atherton formulation for ferroresonance studies,” Int. J. Electr. Power Energy Syst., vol. 101, pp. 482–490, 2018.
  • [21] M. Kanálik, A. Margitová, B. Dolník, D. Medveď, M. Pavlík,and J. Zbojovský, “Analysis of low-frequency oscillations of electrical quantities during a real black-start test in Slovakia,” Int. J. Electr. Power Energy Syst., vol. 124, p. 106370, 2021.
  • [22] E. O. Egorova, “development of the coil volume method for time-domain simulation of internal faults in transformers,” PHDThesis, michigan technological university, 2019.
  • [23] S.E. Zirka, Y.I. Moroz, A.V. Zhuykov, D.A. Matveev, M.A. Kubatkin, M.V. Frolov, M. Popov, Eliminating VT uncertainties in modeling ferroresonance phenomena caused by single phase-to-ground faults in isolated neutral network,” Int. J. Electr. Power Energy Syst., vol. 133, no. May, p. 107275, 2021.
  • [24] L. Zhen, C. JianBin, X. Yuan, X. Zhen, W. Shenhua, and W. Tian, “The ferroresonance of 10kV distribution PT during live working operation,” The 16th IET International Conference on AC and DC Power Transmission (ACDC), 2021, pp. 1641–1646
  • [25] Y. Zhang, S. Xie, N. Jiang, Z. Zhao, D. Luo, N. Wang and J. Li “Analysis of Pt Ferroresonance based on Excitation Characteristic and Self-Excitation Mechanism,” J. Phys. Conf. Ser., vol. 1732, p. 012180, 2021.
  • [26] M. Tajdinian, M. Allahbakhshi, S. Biswal, O. P. Malik, and D. Behi, “Study of the Impact of Switching Transient Overvoltages on Ferroresonance of CCVT in Series and Shunt Compensated Power Systems,” IEEE Trans. Ind. Informatics, vol. 16, no. 8, pp. 5032–5041, 2020.
  • [27] A. Arroyo, R. Martinez, M. Manana, A. Pigazo, and R. Minguez, “Detection of ferroresonance occurrence in inductive voltage transformers through vibration analysis,” Int. J. Electr. Power Energy Syst., vol. 106, pp. 294–300, 2019.
  • [28] P. Sridharan and P. S. C, “Memristor emulator – a nonlinear load for reduction of ferroresonance in a single-phase transformer,” Circuit World, vol. 47, no. 1, pp. 87–96, 2020.
  • [29] I. R. Pordanjani, X. Liang, Y. Wang, and A. Schneider, “Single-Phase Ferroresonance in an Ungrounded System during System Energization,” IEEE Trans. Ind. Appl., vol. 7, no. c, 2021.
  • [30] K. Solak and W. Rebiant, “Modeling of Ferroresonance Phenomena in MV Networks,” in 2018 IEEE Electrical Power and Energy Conference (EPEC), 2018, pp. 1–6.
  • [31] A. Heidary, K. Rouzbehi, H. Radmanesh, and J. Pou, “Voltage Transformer Ferroresonance: An Inhibitor Device,” IEEE Trans. Power Deliv., vol. 35, no. 6, pp. 2731-2733, 2020.
  • [32] V. Mohan, S. Poornima, and C. P. Sugumaran, “Mitigation ofFerroresonance in Capacitive Voltage Transformer Using Memelements,” 2019 International Conference on High Voltage Engineering and Technology (ICHVET), 2019, pp. 1–5.
  • [33] M. Tajdinian, M. Allahbakhshi, B. Behdani, D. Behi, and A.Goodarzi, “Probabilistic framework for vulnerability analysis of coupling capacitor voltage transformer to ferroresonance phenomenon,” IET Sci. Meas. Technol., vol. 14, no. 3, pp. 344–351, 2020.
  • [34] I. G. Ngurah Satriyadi Hernanda, I. M. Yulistya Negara, D. A. Asfani, D. Fahmi, M. R. Ramadhan, and B. K. Yegar Sahaduta, “Study of Ferroresonance in 150 kV High Voltage Inductive Voltage Transformer,” in 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2020, pp. 386–391.
  • [35] M. Tajdinian, M. Allahbakhshi, S. Biswal, O. P. Malik, and D. Behi, “Study of the Impact of Switching Transient Overvoltages on Ferroresonance of CCVT in Series and Shunt Compensated Power Systems,” IEEE Trans. Ind. Informatics, vol. 16, no. 8, pp. 5032–5041, 2020.
  • [36] E. A. Badran, M. E. M. Rizk, and M. H. Abdel-Rahman, “Investigation of ferroresonance in offshore wind farms.,” J. Am. Sci., vol. 7, no. 9, pp. 941–950, 2011.
  • [37] W. Farm, A. Akinrinde, and A. Swanson, “Investigation and Mitigation of Temporary Overvoltage Caused by De-Energization on an,” 2020.
  • [38] S. Aref, A. S. Anaraki, and D. A. Zarchi, “Probability Evaluation of Occurrence of Ferroresonance in Montazer Qaem 63kV Substation,” 2020 14th International Conference on Protection and Automation of Power Systems (IPAPS), 2019, pp. 7–13.
  • [39] A. Nassar, A.-M. Taalab, M. Izzularab, and N. Elkalashy, “Investigation of Resonance and Ferroresonance Overvoltages due to Cable-Transformer Interactions,” ERJ. Eng. Res. J., vol. 43, no. 4, pp. 261–271, 2020.
  • [40] M. Polewaczyk, S. Robak, and M. Szewczyk, “Investigation on ferroresonance due to power transformer energization in high voltage 400 kV transmission grid,” Arch. Electr. Eng., vol. 68,no. 4, pp. 771–786, 2019.
  • [41] I. G. Ngurah Satriyadi Hernanda, I. M. Yulistya Negara, D. A. Asfani, D. Fahmi, M. Wahyudi, and K. S. Anugrah, “Study of Petersen Coil Grounding System Inductance Variation on Ferroresonance in 150 kV Transformer,” in 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2018, pp. 141–146.
  • [42] S. Rezaei, “Impact of transmission line and plant outage on ferroresonance in AC transmission system and new suppression method,” in 13th IET International Conference on AC and DC Power Transmission (ACDC 2017), 2017, pp. 1–6.
  • [43] M. Yang, W. Sima, Q. Yang, J. Li, M. Zou, and Q. Duan, “Non-linear characteristic quantity extraction of ferroresonance overvoltage time series,” IET Gener. Transm. Distrib., vol. 11,no. 6, pp. 1427–1433, 2017.
  • [44] I. M. Yulistya Negara, I. G. Ngurah Satriyadi Hernanda, D. A. Asfani, D. Fahmi, M. Wahyudi, and R. Hidayat, “Comparison of Ferroresonance Response on Three Phases Transformer with Different Core Material: M5 and ZDKH,” 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2018, pp. 129–134.
  • [45] M. Zou, “Accurate simulation model for a three-phase ferroresonant circuit in EMTP–ATP,” Int. J. Electr. Power Energy Syst., vol. 107, pp. 68–77, 2019.
  • [46] R. S. Pal and M. Roy, “Study and Verification of Ferroresonance Simulated with Rudenburg’s Method,” in 2021 Innovations in Energy Management and Renewable Resources(52042), 2021, pp. 1–5.
  • [47] D. K. Buslaev, J. K. Ochkovskaya, and L. D. Ziles, “Ferroresonance occurrence conditions in a simple nonlinear circuit,” Proc. 3rd 2021 Int. Youth Conf. Radio Electron. Electr. Power Eng. REEPE 2021, pp. 2–6, 2021.
  • [48] S. Boutora and H. Bentarzi, “Ferroresonance Study Using False Trip Root Cause Analysis,” Energy Procedia, vol. 162, pp. 306–314, 2019.
  • [49] M. S. H. Bini, S. P. Ang, K. S. K. Yeo, A. Khalil, and S. Jaafar, “Analytical prediction of initiation of ferroresonance modes,” J. Phys. Conf. Ser., vol. 1529, p. 32087, 2020.
  • [50] I. M. Y. Negara, D. A. Asfani, I. G. N. S. Hernanda, D. Fahmi, Verdiansyah, and B. K. Aji, “Wavelet Transformation Selection for Detection of Ferroresonance Behaviour,” in 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2019, pp. 253–258.
  • [51] M. Sowa and Ł. Majka, “Ferromagnetic core coil hysteresis modeling using fractional derivatives,” Nonlinear Dyn., vol. 101, no. 2, pp. 775–793, 2020.
  • [52] M. Mikhak-Beyranvand, J. Faiz, A. Rezaei-Zare, and B. Rezaeealam, “Electromagnetic and thermal behavior of a single-phase transformer during Ferroresonance considering hysteresis model of core,” Int. J. Electr. Power Energy Syst., vol. 121, p. 106078, 2020.
  • [53] M. Hajizadeh, I. Safinejad, and N. Amirshekari, “Study andcomparison of the effect of conventional, low losses and amorphous transformers on the ferroresonance occurrence in electric distribution networks,” CIRED - Open Access Proc. J., vol. 2017, no. 1, pp. 865–869, 2017.
  • [54] M. I. Mosaad and N. A. Sabiha, “Ferroresonance OvervoltageMitigation using STATCOM for Grid-Connected Wind Energy Conversion Systems,” J. Mod. Power Syst. Clean Energy, pp. 1–9, 2021.
  • [55] A. I. Abdi, J. J. Walker, and J. S. Djeumen, “The Effect Of Cable Length On Ferroresonance In Low-Loss Distribution Transformers,” in 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), 2021, pp. 1–4.
  • [56] S. O. Koledowo, E. C. Ashigwuike, and A. Bawa, “A study offerroresonance in underground distribution network for 15MVA, 33/11 kV injection substation,” Niger. J. Technol., vol.39, pp. 219–227, 2020.
  • [57] N. Thanomsat, B. Plangklang, and H. Ohgaki, “Analysis of Ferroresonance Phenomenon in 22 kV Distribution System with a Photovoltaic Source by PSCAD/EMTDC,” Energies, vol. 11, p. 1742, 2018.
  • [58] A. B. Nassif, M. Dong, S. Kumar, and G. Vanderstar, “Managing Ferroresonance Overvoltages in Distribution Systems,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4.
  • [59] A. Abdullah, "A Ferroresonance Study of a 240 MW Solar PV Project," 2018 IEEE Industry Applications Society Annual Meeting (IAS), 2018, pp. 1-4.
  • [60] S. P. Ang, J. Peng, and Z. Wang, “Identification of key circuit parameters for the initiation of ferroresonance in a 400-kV transmission system,” 2010 International Conference on High Voltage Engineering and Application, 2010, pp. 73–76.
  • [61] B. Behdani, M. Allahbakhshi, and M. Tajdinian, “On the impact of geomagnetically induced currents in driving series capacitorcompensated power systems to ferroresonance,” Int. J. Electr. Power Energy Syst., vol. 125, p. 106424, 2021.
  • [62] L. Chen, J. Wang, W. Sima, and T. Yuan, “Classification ofFundamental Ferroresonance, Single Phase-to-Ground and Wire Breakage Over-Voltages in Isolated Neutral Networks,” Energies, vol. 4, no. 9, pp. 1301–1320, 2011.
  • [63] Ł. Majka, “Fractional Derivative Approach in Modeling of aNonlinear Coil for Ferroresonance Analyses,” in Non-Integer Order Calculus and its Applications, 2019, pp. 135–147.
  • [64] M. Navaei, A. A. Abdoos, and M. Shahabi, “A new control unit for electronic ferroresonance suppression circuit in capacitor voltage transformers,” Int. J. Electr. Power Energy Syst., vol.99, pp. 281–289, 2018.
  • [65] I. M. Bedritskiy and K. K. Jurayeva, “Estimation of Errors in Calculations of Coils with Ferromagnetic Core,” in 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2020, pp. 1–6.
  • [66] M. Kutija and L. Pravica, “Effect of harmonics on ferroresonance in low voltage power factor correction system—A case study,” Appl. Sci., vol. 11, no. 10, 2021.
  • [67] M. Wahyudi, I. M. Yulistya Negara, D. Anton Asfani, I. G. N. S. Hernanda, and D. Fahmi, “Investigation of Ferroresonance Physical Behaviours on Three Phases Transformer with Unsymmetrical Core Leg,” in 2018 International Seminar on Application for Technology of Information and Communication, 2018, pp. 66–70.
  • [68] J. Wisniewski, E. Anderson, and J. Karolak, “Search for network parameters preventing ferroresonance occurrence,” in 2007 9th International Conference on Electrical Power Quality and Utilisation, 2007, pp. 1–6.
  • [69] M. Esmaeili, M. Rostami, G. B. Gharehpetian, and C. P. McInnis, “Ferroresonance After Islanding of Synchronous Machine-Based Distributed Generation,” Can. J. Electr. Comput. Eng., vol. 38, no. 2, pp. 154–161, 2015.
  • [70] F. In and P. Systems, 13 - Ferroresonance in power systemsenergiforskrapport-2017-457. Report, 2017.
  • [71] S. Chen and H. Yu, “A Review on Overvoltages in Microgrid,” in 2010 Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–4.
  • [72] R. Zhang, H. Li, S. P. Ang, and Z. Wang, “Complexity of ferroresonance phenomena: sensitivity studies from a single-phase system to three-phase reality,” in 2010 International Conference on High Voltage Engineering and Application, 2010, pp. 172–175.
  • [73] B. Baldwin, S. S. Sabade, and S. Joshi, “A Study of Ferroresonance & Mitigation Techniques April,” michigan university, 2013.
  • [74] K. Milicevic, E. K. Nyarko, and I. Biondic, “Chua’s model of nonlinear coil in a ferroresonant circuit obtained using Dommel’s method and grey box modelling approach,” Nonlinear Dyn., vol. 86, no. 1, pp. 51–63, 2016.
  • [75] N. Thanomsat and B. Plangklang, “Ferroresonance phenomenon in PV system at LV side of three phase power transformer using of PSCAD simulation,” 2016 13th International Conference on Electrical Engineering/Electronics,Computer, Telecommunications and Information Technology (ECTI-CON), 2016, pp. 1-4.
  • [76] A. Akinrinde, A. Swanson, and R. Tiako, “Dynamic Behavior of Wind Turbine Generator Configurations during Ferroresonant Conditions,” Energies, vol. 12, p. 639, 2019.
  • [77] F. Ben Amar and R. Dhifaoui, “Analytical Approach for the Systematic Research of the Periodic Ferroresonant Solutions in the Power Networks,” Energy Power Eng., vol. 03, pp. 450–477, 2011.
  • [78] L. Jiaxin, L. Xuchen, W. Yanan, W. Defu, and T. Jianeng, “Discriminate Method of Power Frequency Ferroresonance in System with Non-Effectively Earthed Neutral of Three-Phase Enclosed GIS,” in 2018 China International Conference on Electricity Distribution (CICED), 2018, pp. 801–805.
  • [79] T. Şengüler and S. Şeker, “Continuous wavelet transform for ferroresonance detection in power systems,” Electr. Eng., vol. 99, no. 2, pp. 595–600, 2017.
  • [80] A. Karrar, M. Ahmed, A. Ali, S. Mohammed, R. Hay, and R. Johnson, “Investigation of Ferroresonance Incidents in the EPB Distribution Network,” 2018.
  • [81] Q. Wu, D. Deswal, M. Yang, S. Wang, and F. de León, “Experimental Study of Magnetic Effects of Steel Tanks on Three-Phase Transformer Transients,” IEEE Trans. Power Deliv., vol. 35, no. 2, pp. 665–673, 2020.
  • [82] Ł. Majka and M. Klimas, “Diagnostic approach in assessmentof a ferroresonant circuit,” Electr. Eng., vol. 101, no. 1, pp. 149–164, 2019.
  • [83] R. Cetina, V. Torres, and M. Madrigal, “Simulations of ferroresonance in transformers using ATP (Alternative Transient Program),” in 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, pp. 1–7.
  • [84] R. El Mahayni, A. Gheeth, J. Thomai, and R. Sudhir, “Ferroresonance measurements and modeling; a waveform is worth a thousand words,” in 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe), 2018, pp. 1–10.
  • [85] A. H. Abu Bakar, S. A. Khan, T. Kwang, and N. Abd Rahim, “A Review of Ferroresonance in Capacitive Voltage Transformer,” IEEJ Trans. Electr. Electron. Eng., vol. 10, 2015.
  • [86] V. George, G. K. Kumaran, J. Shivashankari, and S. Ashok, “Analysis of ferroresonance in a hybrid micro-grid with multiple distributed resources,” in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 1286–1291.
  • [87] H. Fordoei and S. A. Afsari, “Elimination of chaotic ferroresonance in power transformer by ISFCL,” Int. J. Electr. Power Energy Syst., vol. 68, 2015.
  • [88] S. Emiroglu, Y. Uyaroglu, and T. E. Gümüş, “Recursive backstepping control of ferroresonant chaotic oscillations consisting between grading capacitor with nonlinear inductance of voltage transformer,” Eur. Phys. J. Spec. Top., vol. 230, no. 7, pp. 1829–1837, 2021.
  • [89] A. Heidary, H. Radmanesh, A. Bakhshi, S. Samandarpour, K. Rouzbehi, and N. Shariati, “Compound ferroresonance overvoltage and fault current limiter for power system protection,” IET Energy Syst. Integr., vol. 2, no. 4, pp. 325–330, 2020.
  • [90] S Poornima, “Suppression of ferroresonance using passive memristor emulator” , Chin. Phys. Vol. 30, no. 6, P. 068401, 2021.
  • [91] Z. Abdul-Malek, K. Mehranzamir, B. Salimi, H. Nabipour Afrouzi, and S. Vahabi Mashak, “Investigation of ferroresonance mitigation techniques in voltage transformer using ATP-EMTP simulation,” J. Teknol. (Sciences Eng., vol. 64, no. 4, pp. 85–95, 2013.
  • [92] S. Rezaei, “Power Oscillation Due to Ferroresonance and Subsynchronous Resonance,” Power System Stability, Kenneth Eloghene Okedu, IntechOpen, 2019.
  • [93] V. Valverde, A. J. Mazón, I. Zamora, and G. Buigues, “Ferroresonance in voltage transformers: Analysis and simulations,” Renew. Energy Power Qual. J., vol. 1, no. 5, pp. 465–471, 2007.
  • [94] M. Akbari, A. Rezaei-Zare, M. A. M. Cheema, and T. Kalicki, “Air gap inductance calculation for transformer transient model,” IEEE Trans. Power Deliv., vol. 36, no. 1, pp. 492–494, 2021.
  • [95] A. Tokić, M. Kasumović, M. Pejić, V. Milardić, and T. Cetin Akinci, “Determination of single-phase transformer saturation characteristic by using Nelder–Mead optimization method,” Electr. Eng., 2021.
  • [96] R. Perez Pineda, R. Rodrigues, and A. Aguila Tellez, “Analysis and Simulation of Ferroresonance in Power Transformers using Simulink,” IEEE Lat. Am. Trans., vol. 16, no. 2, pp. 460–466, 2018.
  • [97] J. A. Corea-Araujo, J. A. Martinez-Velasco, F. González-Molina, J. A. Barrado-Rodrigo, L. Guasch-Pesquer, and F. Castro-Aranda, “Validation of single-phase transformer model for ferroresonance analysis,” Electr. Eng., vol. 100, no. 3, pp. 1339–1349, 2018.
  • [98] R. Minkner and J. Schmid, “Voltage Measurement,” in The Technology of Instrument Transformers : Current and Voltage Measurement and Insulation Systems, Wiesbaden: Springer Fachmedien Wiesbaden, 2022, pp. 139–233.
  • [99] S. Rezaei, “Intelligent overcurrent protection during Ferroresonance in smart distribution grid,” in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, pp. 1–6.
  • [100] O. Akgün, T. C. Akinci, G. Erdemir, and S. Seker, “Analysis of instantaneous frequency, instantaneous amplitude and phase angle of ferroresonance in electrical power networks,” J. Electr. Eng., vol. 70, pp. 494–498, 2019.
  • [101] Z. Emin et al., “Resonance and Ferroresonance in Power Networks,” Cigré Technical Brochure 569 - WG C4.307, Paris, France. 2014.
  • [102] A. Djebli, F. Aboura, L. Roubache, and O. Touhami, “Impact of the eddy current in the lamination on ferroresonance stability at critical points,” Int. J. Electr. Power Energy Syst., vol. 106, pp. 311–319, 2019.
  • [103] R. Saravanaselvan and R. Ramanujam, “Detection and analysis of isolated subharmonic ferroresonant solutions in power transformers,” Eur. Trans. Electr. Power, vol. 21, no. 1, pp. 82–88, 2011.
  • [104] T. C. Akinci, E. Ayaz, S. Yildirim Unnu, and S. Seker, “Areview study on ferroresonance phenomena in power systems,” in International Conference on Technics, Technologies and Education ICTTE, 2014.
  • [105] Ł. Majka and M. Klimas, “Diagnosis of a ferroresonance type through visualisation,” ITM Web Conf., vol. 28, p. 1039, 2019.
  • [106] A. Akinrinde, A. Swanson, R. Tiako, A. Emtp, and S. Matlab, “Effect of Ferroresonance on Wind Turbine: Comparison of Atp/Emtp and Matlab/Simulink,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, pp. 1581–1594, 2019.
  • [107] S. M. H. Hosseini and Yasertoghaniholari, “Ferroresonance Study on the VT in the Karoon 4 Power Plant 400 kV GIS Substation,” Res. J. Appl. Sci. Eng. Technol., vol. 7, pp. 1721–1728, 2014.
  • [108] C. Pallem, D. Mueller, and M. McVey, “Case Study of a New Type of Ferroresonance in Solar Power Plants,” in 2019 IEEE Power Energy Society General Meeting (PESGM), 2019, pp. 1–5.
  • [109] S. Mišák and J. Fulneček, “The influence of ferroresonance on a temperature of voltage transformers in undeground mines,” in 2017 18th International Scientific Conference on Electric Power Engineering (EPE), 2017, pp. 1–4.
  • [110] R. Martinez, A. Pigazo, M. Manana, A. Arroyo, and R. Minguez, “Ferroresonance Detection in Voltage Transformers Through Vibration Monitoring,” in Advances in Condition Monitoring of Machinery in Non-Stationary Operations, 2019, pp. 269–277.
  • [111] W. Sima, D. Peng, M. Yang, P. Sun, B. Zou, and Z. Xiong, “Reversible Wideband Hybrid Model of Two-Winding Transformer including the Core Nonlinearity and EMTP Implementation,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3159–3169, 2021.
  • [112] Manitoba Hydro International “Chapter 4 -“PSCAD Cookbook Ferroresonance,” 2018.
  • [113] Z. He, X. Li, J. Qin, and H. Huang, “Study on Ferroresonance Over-Voltage Based on Harmonic Elimination Device,” in 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 2018, pp. 460–465.
  • [114] W. Sima, M. Yang, Q. Yang, T. Yuan, and M. Zou, “Simulation and experiment on a flexible control method for ferroresonance,” IET Gener. Transm. Distrib., vol. 8, no. 10, pp. 1744–1753, 2014.
  • [115] E. Price, “A tutorial on ferroresonance,” in 2014 67th Annual Conference for Protective Relay Engineers, 2014, pp. 676–704.
  • [116] H. Radmanesh and S. H. Fathi, “Stabilizing Ferroresonance Oscillations in Voltage Transformers Using Limiter Circuit,” Electronics, vol. 16, pp. 145–152, 2012.
  • [117] K.-. Tseng and P.-. Cheng, “Mitigating 161 kV electromagnetic potential transformers’ ferroresonance with damping reactors in a gas-insulated switchgear,” IET Gener. Transm. Distrib., vol. 5, no. 4, pp. 479–488, 2011.
  • [118] A. M. Matinyan, M. V Peshkov, V. N. Karpov, and N. A. Alekseev, “Study of Transient Ferroresonance on a PTL with a TCSR,” Power Technol. Eng., vol. 51, no. 3, pp. 346–350, 2017.
  • [119] A. Abbasi, S. Fathi, and A. Mihankhah, “Elimination of Chaotic Ferroresonant Oscillations Originated from TCSC in the Capacitor Voltage Transformer,” IETE J. Res., vol. 64, pp. 1–13, 2017.
  • [120] J. Izykowski, E. Rosolowski, P. Pierz, and M. M. Saha, “Design of ferroresonance suppression circuit for capacitive voltage transformer - analytical approach supported by simulation,” in 2016 Power Systems Computation Conference (PSCC), 2016, pp. 1–7.
  • [121] A. Rezaei-Zare, A. H. Etemadi, and R. Iravani, “Challenges of Power Converter Operation and Control Under Ferroresonance Conditions,” IEEE Trans. Power Deliv., vol. 32, no. 6, pp. 2380–2388, 2017.
  • [122] E. Bayona et al., “Electronic resistor emulators for ferroresonance damping in MV transformers,” IET Renew. Power Gener., vol. 13, no. 1, pp. 201–208, 2019.
  • [123] E. Bayona et al., “Ferroresonance Mitigation Device in Voltage Transformers with a Flyback based Resistor Emulator,” in 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), 2018, pp. 1–5.
  • [124] A. Heidary and H. Radmanesh, “Smart solid-state ferroresonance limiter for voltage transformers application: principle and test results,” IET Power Electron., vol. 11, no. 15, pp. 2545–2552, 2018.
  • [125] E. Cazacu, L. Petrescu, and V. Ioniţă, “Ferroresonance modes determination of single-phase toroidal transformers,” in 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), 2017, pp. 358–361.
  • [126] W. Chunbao, T. Lijun, and Q. Yinglin, “A study on factors influencing ferroresonance in distribution system,” in 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 583–588.
  • [127] H. Radmanesh, “Distribution Network Protection Using Smart Dual Functional Series Resonance-Based Fault Current and Ferroresonance Overvoltage Limiter,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3070–3078, 2018.
  • [128] A. Abbasi, M. Rostami, A. Gholami, and H. Abbasi, “Analysis of Chaotic Ferroresonance Phenomena in Unloaded Transformers Including MOV,” Energy Power Eng., vol. 03, 2011.
  • [129] D. Krajtner and Igor!, “Influence of HV inductive voltagetransformers core design to the ferroresonance occurrence probability.” International Conference on Power Systems Transient (IPST), 2015.
  • [130] Y. Wang, X. Liang, I. R. Pordanjani, R. Cui, A. Jafari, and C. Clark, “Ferroresonance Causing Sustained High Voltage at A De-energized 138 kV Bus: A Case Study,” in 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS), 2019, pp. 1–9.
  • [131] Y. Chen, Y. Li, J. Wu, and K. Liu, “Analysis of Sequences Harmonics Measurement Impact Using Potential Transformers Grounded through Ferroresonance Eliminator,” Appl. Mech. Mater., vol. 615, pp. 215–221, 2014.
  • [132] H. Gao, P. W. Yang, C. H. Liu, J. S. Zhang, and T. Wu, “Analysis and Simulation of Ferroresonance Mechanism of Potential Transformer Based on Harmonic Balance Method,” {IOP} Conf. Ser. Earth Environ. Sci., vol. 701, no. 1, p. 12071, 2021.
  • [133] M. Monadi, A. Luna, J. I. Candela, J. Rocabert, M. Fayezizadeh, and P. Rodriguez, “Analysis of ferroresonance effects in distribution networks with distributed source units,” in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 1974–1979.
  • [134] M. Yang, W. Sima, L. Chen, P. Duan, P. Sun, and T. Yuan, “Suppressing ferroresonance in potential transformers using a model-free active-resistance controller,” Int. J. Electr. Power Energy Syst., vol. 95, pp. 384–393, 2018.
  • [135] J. Horak, “A review of ferroresonance,” in 57th Annual Conference for Protective Relay Engineers, 2004, 2004, pp. 1–29.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d1e6aa9-61fa-41c4-8a64-762b8542c016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.