PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ jakości danych przestrzennych na wyniki modelowania obiegu wody w dorzeczu Parsęty

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of spatial data quality on modelling of water circulation in the Parsęta drainage basin
Języki publikacji
PL
Abstrakty
PL
Numeryczne modele hydrologiczne i jakości wody bazujące na systemach informacji geograficznej wykorzystują różnorodne dane przestrzenne. Celem prac była ocena w jakim stopniu wyniki symulacji obiegu wody wykonane za pomocą modelu SWAT (Soil and Water Assessment Tool) są zależne od jakości danych wejściowych. Badaniami objęta została zlewnia Parsęty, która ze względu na jej wewnętrzną strukturę uważana jest za reprezentatywną dla obszarów młodoglacjalnych umiarkowanej strefy klimatycznej. W badaniach wykorzystano trzy różne źródła danych wysokościowych (DEM) oraz danych glebowych. W symulacjach uwzględniono dane meteorologiczne z wielolecia 1966-2010 pochodzące z 4 stacji meteorologicznych i 10 posterunków opadowych. Uwzględniono także zmiany pokrycia terenu i użytkowania ziemi jakie zaszły w analizowanym okresie przez wykorzystanie map z czterech horyzontów czasowych (1975, 1990, 2000, 2006). Kalibrację i walidację modelu przeprowadzono wykorzystując dane pomiarowe IMGW z trzech posterunków hydrometrycznych na Parsęcie. Uzyskane wyniki pozwoliły na analizę zróżnicowania przestrzennego elementów bilansu wodnego oraz analizę serii czasowych odpływu wody. Wyniki poddane zostały ocenie przy zastosowaniu współczynników statystycznych: determinacji R2, efektywności modelu Nasha-Sutcliffa (NSE) oraz współczynnika odchylenia procentowego (PBIAS). Otrzymane rezultaty modelowania były zróżnicowane w zależności od wykorzystanych danych wejściowych. Największą zgodność danych symulowanych z pomiarowymi uzyskano wykorzystując dane charakteryzujące się wysoką dokładnością przestrzenną i tematyczną.
EN
GIS-based hydrological and water quality models are based on the use of a variety of spatial data. The aim of this study was to assess whether the SWAT (Soil and Water Assessment Tool) simulation results are dependent on the quality of input data. The subject of the research covered the Parsęta drainage basin which in view of its internal structure is considered representative for the last glacial lowlands within the temperate climatic zone. Three different sources of DEM and soil data were used in the study. The simulations included meteorological data for the years 1966-2010 from 4 meteorological stations and 10 precipitation stations. Land cover and land use changes that took place in the analyzed period were included owing to application of maps originating from four time periods (1975, 1990, 2000, 2006). Calibration and validation was performed on the basis of the data collected by the Institute of Meteorology and Water Management at three water gauging stations on the Parsęta river. The results allowed the analysis of the spatial diversity of water balance elements and variability analysis of time series of water outflow. The results were subject to assessment by statistical methods: R2 determination coefficient, Nash-Sutcliffe efficiency coefficient (NSE), percent bias coefficient (PBIAS). The obtained results varied depending on the applied input data. The best consistency of the simulated data with the measurement data was obtained using data with the high spatial and thematic accuracy.
Czasopismo
Rocznik
Strony
437--446
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Nauk Geograficznych i Geologicznych, Instytut Geoekologii i Geoinformacji
Bibliografia
  • 1. Abbaspour K.C., 2012: SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual. Eawag, 103.
  • 2. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998: Large area hydrologic modeling and assessment: Part I. Model development. Journal of American Water Resources Association 34(1): 73‐89.
  • 3. Beven K., 2001: Rainfall-Runoff modelling. The Primer. John Wiley and Sons, UK, Chichester, 360.
  • 4. Choiński A., 1998: Warunki obiegu wody w dorzeczu Parsęty. [W:] Kostrzewski A. (red.), Funkcjonowanie geoekosystemów zlewni rzecznych 1. Środowisko przyrodnicze dorzecza Parsęty – stan badań, zagospodarowanie, ochrona, Wyd. Uczelniane Politechniki Koszalińskiej, Poznań, 36-51.
  • 5. Crawford N.H., Linsley R.K., 1966: Digital simulation in hydrology, Stanford Watershed IV. Technical Report No. 39, Department of Civil Engineering, Stanford University, 210.
  • 6. Dawdy D.R., O’Donnell T., 1965: Mathematical models of catchment behavior. Am. Soc. Civil Engineers Proc. Paper 4410, HY4: 123-137.
  • 7. Douglas‐Mankin K.R., Srinivasan R., Arnold J.G., 2010: Soli and Water Assesment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE 53(5): 1423-1431.
  • 8. Drwal J., 1982: Wykształcenie i organizacja sieci hydrograficznej jako podstawa oceny struktury odpływu na terenach młodoglacjalnych. Wydawnictwo UG, Gdańsk, 130.
  • 9. FAO/UNESCO, 2003: Digital Soil Map of the World and Derived Soil Properties. Rev. 1. (CD Rom). Available from http://www.fao.org/catalog/what_new-e.htm.
  • 10. FAO/IIASA/ISRIC/ISSCAS/JRC, 2012: Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
  • 11. Garbrecht J., Martz L.W., 1997: The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of Hydrology 193: 204-213.
  • 12. Gassman P.W., Reyes M.R., Green C.H., Arnold J.G., 2007: The Soil and Water Assessment Tool: historical development, applications, and future research directions. Transactions of the ASABE (American Society of Agricultural and Biological Engineers) 50(4): 1211-1250.
  • 13. Gassman P.W., Sadeghi A.M., Srinivasan R., 2014: Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality 43: 1-8.
  • 14. Hejmanowska B., 2006: Wpływ jakości danych na modelowanie stref zagrożenia powodziowego. Roczniki Geomatyki t. 4, z. 1: 145-150, PTIP, Warszawa.
  • 15. Ignar S., 1988: Metoda SCS i jej zastosowanie do wyznaczania opadu efektywnego. Przegląd Geofizyczny 33 (4).
  • 16. Kostrzewski A., 1998: Struktura krajobrazowa dorzecza Parsęty w oparciu o dotychczasowe podziały fizyczno-geograficzne. [W:] Kostrzewski A. (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Środowisko przyrodnicze dorzecza Parsęty, stan badań, zagospodarowanie, ochrona, Wydawnictwo Naukowe Bogucki, Poznań: 131-141.
  • 17. Kostrzewski A., 2003: Obieg wody i jego wpływ na powstanie i funkcjonowanie struktur krajobrazowych. [W:] Kostrzewski A. (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Obieg wody uwarunkowania i skutki w środowisku przyrodniczym, Wydawnictwo Naukowe Bogucki, Poznań: 17-20.
  • 18. Kostrzewski A., Mazurek M., Zwoliński Z., 1994: Dynamika transportu fluwialnego górnej Parsęty jako odbicie funkcjonowania systemu zlewni. Stowarzyszenie Geomorfologów Polskich, Wydawnictwo Naukowe Bogucki, Poznań, 165.
  • 19. Kundzewicz Z.W., Mata L.J., Arnell N.W., Döll P., Jimenez B., Miller K., Oki T., Sen Z., Shiklomanov I., 2008: The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal 53(1): 3-10.
  • 20. Monteith J.L., 1965: Evaporation and the environment. [In:] The State and Movement of Water in Living Organisms. Proc. 19th Symp. Swansea, U.K.: Society of Experimental Biology, Cambridge University Press.
  • 21. Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R., 2011: Soil and Water Assessment Tool theoretical documentation, version 2009. Temple, Tex.: USDA‐ARS Grassland, Soil and Water Research Laboratory.
  • 22. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991: RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation 46(1).
  • 23. Rockwood D.M., 1964: Streamflow synthesis and reservoir regulation. U.S. Army Corps of Engineers, North Pacific Division, Technical Bulletin no. 22, 98.
  • 24. Sarma P.B.S., Delleur J.W., Rao A.R., 1973: Comparison of rainfall-runoff models for urban areas. Journal of Hydrology 18(3-4): 329-347.
  • 25. Singh J., Knapp H.V., Demissie M., 2004: Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. Journal of the American Water Resources Association 41: 343-360.
  • 26. Sugarawa M., 1967: The flood forecasting by series storage type model. IAHS, 85: 1-6.
  • 27. Szkutnicka J., 1987: PIHM. 105, Wyd. Komunikacji i Łączności, Warszawa.
  • 28. USDA Soil Conservation Service, 1972: Section 4. Hydrology. [W:] National Engineering Handbook, US. Department of Agriculture-Soil Conservation Service, Washington.
  • 29. Williams J.R., 1975: Sediment-yield prediction with universal equation using runoff energy factor. [W:] Present and prospective technology for predicting sediment yield and sources: Proceedings of the sediment-yield workshop, USDA Sedimantation Lab., Oxford, 244-252.
  • 30. Zwoliński Z., 1989: Geomorficzne dostosowywanie się koryta Parsęty do aktualnego reżimu rzecznego. Dokumentacja Geograficzna 3-4, IGiPZ PAN, 144.
  • 31. Zwoliński Z., 2010: Przedmowa. [W:] Zwoliński Z. (red.), GIS – woda w środowisku. Wydawnictwo Naukowe Bogucki, Poznań: 9-10.
  • 32. Zwoliński Z., 2011: Globalne zmiany klimatu i ich implikacje dla rzeźby Polski. Landform Analysis 15: 5-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d19b62f-ec4e-4a10-a632-0c750c44ff23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.