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Abstract. In this paper, a nonlinear differential problem involving the p-Laplacian operator
with mixed boundary conditions is investigated. In particular, the existence of three non-zero
solutions is established by requiring suitable behavior on the nonlinearity. Concrete examples
illustrate the abstract results.
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1. INTRODUCTION

Elliptic differential problems with mixed boundary conditions of Dirichlet–Neumann
type can be used to describe many engineering or physical phenomena, acting as
models in applied sciences. Stress and strain states on an elastic surface in mechanics
as well as solidification and melting of a material in industrial processes are just some
examples in which mixed conditions are involved. In particular, an intuitive example
is given by an iceberg partially submerged in water, for which mixed conditions must
be imposed on its boundary. Precisely, in the portion under the water, one imposes
Dirichlet boundary condition, while in the remaining part of the boundary that is
in contact with the air, Neumann conditions are used. For further details and more
information on physical applications of this argument, we refer to [7, 12, 13] and their
references. Starting from such motivations, several authors established regularity,
existence and multiplicity results of the solutions (see [1, 5, 8, 9, 11]). We also cite
the interesting papers [10,14,15], where further nonlinear differential problems, useful in
describing different physical phenomena, have been recently investigated. In particular,
with regard to the multiplicity of solutions for mixed problems, we cite [4] and [8]
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where, under appropriate hypotheses, the existence of two non-zero solutions have
been guaranteed. Here, our main aim is to ensure, under a suitable set of assumptions,
the existence of three non-zero solutions. Precisely, in this paper, we consider a mixed
nonlinear differential problem involving the p-Laplacian even with a nonhomogeneous
term in the Neumann condition and we obtain the existence of three weak solutions
to the problem 




−∆pu+ q(x)|u|p−2u = λf(x, u) in Ω,
u = 0 on Γ1,

|∇u|p−2 ∂u
∂ν = µg(u) on Γ2,

(Mλ,µ)

where Ω is a nonempty bounded open subset of the Euclidean space (Rn, | · |), n ≥ 3,
with boundary of class C1, Γ1, Γ2 two smooth (n−1)−dimensional submanifolds of ∂Ω
such that Γ1∩Γ2 = ∅, Γ̄1∪Γ̄2 = ∂Ω, Γ̄1∩Γ̄2 = Σ, with Σ a smooth (n−2)−dimensional
submanifold of ∂Ω, q ∈ L∞(Ω) with q0 := ess infΩ q > 0, ∆pu = div

(
|∇u|p−2∇u

)
,

with p > n, f : Ω× R → R is a Carathéodory function, g : R → R is a nonnegative
continuous function, λ and µ are real parameters, with λ > 0 and µ ≥ 0, and ν is the
outer unit normal to ∂Ω.

In this paper, we present two main theorems. In the first one (Theorem 3.1), we
require on the primitive of the function f a growth, which is more than quadratic
in an appropriate interval and less than quadratic at infinity, and an asymptotic
condition on g, obtaining so three non-zero solutions (see also Remark 3.2). In the
second one (Theorem 3.3), assuming on f a sign hypothesis and a suitable behavior
in an appropriate interval, the existence of three solutions, which are in addition
uniformly bounded with respect to the parameter, is again ensured, without requiring
asymptotic conditions at infinity either on f or on g. Finally, special cases of main
results are pointed out (see Theorems 3.4 and 3.5) and some concrete examples are
included (see Examples 3.6 and 3.7). By way of example of our results, we present
here the following particular case.

Theorem 1.1. Let f : R→ R be a nonnegative continuous function and assume that

lim
ξ→0+

f(ξ)
ξp−1 = lim

ξ→+∞
f(ξ)
ξp−1 = 0. (1.1)

Then there exists λ∗ > 0 such that for each λ ∈ ]λ∗,+∞[ the problem




−∆pu+ q(x)|u|p−2u = λf(u) in Ω,
u = 0 on Γ1,
∂u
∂ν = 0 on Γ2,

(AMλ)

admits at least three nonnegative weak solutions.

The paper is organized as follows. In Section 2, we present preliminaries and main
tools, while Section 3 is devoted to main results.
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2. PRELIMINARIES AND BASIC NOTATIONS

In this paper, the multiplicity of solutions to the problem (Mλ,µ) is achieved by varia-
tional methods and in particular by exploiting critical point theorems for differentiable
functionals of type Φ−λΨ defined on a real Banach Space X. To this end, we introduce
some basic tools.

Let X be a subset of the Sobolev space W 1,p(Ω), we mean

X = W 1,p
0,Γ1

(Ω) = {u ∈W 1,p(Ω) s.t. u|Γ1 = 0}

endowed with the norm

‖u‖ =



∫

Ω

|∇u(x)|pdx+
∫

Ω

q(x)|u(x)|pdx




1/p

.

A weak solution of problem (Mλ,µ) is any u ∈ X such that
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx+
∫

Ω

q(x)|u(x)|p−2u(x)v(x)dx

= λ

∫

Ω

f(x, u(x))v(x)dx+ µ

∫

Γ2

g(γ(u(x)))γ(v(x))dσ,

for all v ∈ X, where γ : W 1,p(Ω)→ Lp(∂Ω) is the trace operator.
We recall that, since p > n, W 1,p(Ω) is embedded in C0(Ω) so X is embedded

in C0(Ω). Therefore, by setting

k = sup
u∈W 1,p(Ω)\{0}

supx∈Ω |u(x)|
(∫

Ω |∇u(x)|pdx+
∫

Ω q(x)|u(x)|pdx
) 1
p

,

we have
‖u‖∞ ≤ k‖u‖, (2.1)

where ‖ · ‖∞ is the usual norm in L∞(Ω).
We recall that if Ω is convex, an explicit upper bound for the constant k is

k1 = 2
p−1
p max

{(
1∫

Ω q(x)dx

) 1
p

,
diam(Ω)
n

1
p

(
p− 1
p− nmeas(Ω)

) p−1
p ‖q‖∞∫

Ω q(x)dx

}
,

where diam(Ω) is the diameter of Ω, meas(Ω) is the Lebesgue measure of Ω and,
obviously, k ≤ k1 (see [2, Remark 1]).

Throughout the sequel, f : Ω× R→ R is an L1-Carathéodory function and λ is a
positive real parameter and µ a nonnegative real parameter.
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We recall that f : Ω× R→ R is an L1-Carathéodory function if:

1. x 7→ f(x, ξ) is measurable for every ξ ∈ R;
2. ξ 7→ f(x, ξ) is continuous for almost every x ∈ Ω;
3. for every s > 0 there is a function ls ∈ L1(Ω) such that

sup
|ξ|≤s

|f(x, ξ)| ≤ ls(x),

for a.e. x ∈ Ω.

Put

F (x, t) =
t∫

0

f(x, ξ)dξ for all (x, t) ∈ Ω× R,

G(t) =
t∫

0

g(ξ)dξ for all t ∈ R.

Now, we define the following functionals. For any u ∈ X, set

Φ(u) := 1
p
‖u‖p,

and
Ψ(u) :=

∫

Ω

F (x, u(x))dx+ µ

λ

∫

Γ2

G(γ(u(x)))dσ,

for all u ∈ X.
Now, denoting the Euler function by

Γ(t) :=
+∞∫

0

zt−1e−zdz, for all t > 0,

we define
σ(p, n) := inf

µ∈]0,1[

1− µn
µn(1− µ)p ,

and consider µ ∈]0, 1[ such that σ(p, n) = 1−µn
µn(1−µ)p . Moreover, let

R := sup
x∈Ω

dist(x, ∂Ω).

Simple calculations show that there is x0 ∈ Ω such that B(x0, R) ⊆ Ω, and, for
µ ∈]0, 1[, one has B(x0, µR) ⊂ B(x0, R). Further, put

gµ(p, n) := µn + 1
(1− µ)pnB(µ,1)(n, p+ 1),



Nonlinear elliptic equations involving the p-Laplacian. . . 163

where B(µ,1)(n, p + 1) denotes the generalized incomplete beta function defined as
follows

B(µ,1)(n, p+ 1) :=
1∫

µ

tn−1(1− t)(p+1)−1dt.

We also denote by

ωR := π
n
2

Γ(1 + n
2 )R

n,

the measure of the n-dimensional ball of radius R, and

a(Γ2) =
∫

Γ2

dσ.

The following lemma guaranties the nonnegativity of the weak solution under
appropriate hypothesis on the nonlinear term.

Lemma 2.1 ([4, Lemma 2.3]). If we assume f(x, 0) ≥ 0 for a.e. x ∈ Ω, then the weak
solutions of problem (Mλ,µ) are nonnegative.

As said before, our main tools are three critical point theorems that we recall here.
The first one has been obtained in [6], and it is a more precise version of Theorem 3.2
of [3]. The second one has been established in [3].

Theorem 2.2 ([6, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X → R
a coercive, continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact such that

Φ(0) = Ψ(0) = 0. (2.2)

Assume that there exist r > 0 and ū ∈ X, with r < Φ(ū), such that:

(a1)
supu∈Φ−1(]−∞,r]) Ψ(u)

r
<

Ψ(ū)
Φ(ū) ,

(a2) for each λ ∈ Λr =
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r]) Ψ(u)

[
, the functional Iλ = Φ − λΨ

is coercive.

Then, for each λ ∈ Λr, the functional Iλ = Φ− λΨ has at least three distinct critical
points in X.

Theorem 2.3 ([3, Corollary 3.1]). Let X be a reflexive real Banach space, Φ : X → R
a convex, coercive and continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on X∗, Ψ : X → R a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact such that

inf
X

Φ = Φ(0) = Ψ(0) = 0. (2.3)
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Assume that there exist two positive constant r1, r2 and ū ∈ X, with 2r1 < Φ(ū) < r2
2 ,

such that:

(b1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
<

2
3

Ψ(ū)
Φ(ū) ,

(b2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
<

1
3

Ψ(ū)
Φ(ū) ,

(b3) for each

λ ∈ Λr1,r2 =
]

3
2

Φ(ū)
Ψ(ū) ,min{ r1

supu∈Φ−1(]−∞,r1[) Ψ(u) ,
r2

2supu∈Φ−1(]−∞,r2[) Ψ(u)

[

and for every u1, u2 ∈ X, which are local minima for the functional Iλ = Φ−λΨ,
and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0 one has inft∈[0,1] Ψ (tu1 + (1− t)u2) ≥ 0.

Then, for each λ ∈ Λr1,r2 , the functional Iλ = Φ− λΨ admits three distinct critical
points which lie in Φ−1(]−∞, r2[).

3. MAIN RESULTS

In this section, we present our main results. To this end, consider the problem (Mλ,µ)
as given in the Introduction and put

δ := R

k

[
ωRµ

nσ(p, n) + 1
(1−µ)p

∫
B(x0,R)\B(x0,µR)

q(x) |R− |x−x0|p| dx+Rp
∫

B(x0,µR)
q(x)dx

] 1
p

,

where R, k, ωR, µ̄, σ(p, n) and q(x) have been defined in Section 2.
Here and in the sequel we assume that f(x, 0) ≥ 0 for a.e x ∈ Ω. The first main

result of this section is the following theorem.

Theorem 3.1. Let f : Ω×R→ R be an L1−Carathéodory function and let g : R→ R
be a nonnegative continuous function. Assume that there exist two nonnegative constants
c and d, with c < d such that

∫
Ω max|ξ|≤c F (x, ξ)dx

cp
< δp

∫
B(x0,µR) F (x, d)dx

dp
, (3.1)

F (x, t) ≥ 0, for all (x, t) ∈ Ω× [0, d], (3.2)

lim sup
|ξ|→+∞

[
sup
x∈Ω

F (x, ξ)
ξp

]
= 0, (3.3)

and
lim sup
|ξ|→+∞

G(ξ)
ξp

< +∞. (3.4)
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Then, for each

λ ∈ Λ1 :=
]

1
pkpδp

dp∫
B(x0,µR) F (x, d)dx,

1
pkp

cp∫
Ω max|ξ|≤c F (x, ξ)dx

[

there exists η > 0 with

η = min




cp − λpkp

∫
Ω max|ξ|≤c F (x, ξ)dx

pkpa(Γ2)G(c) ,
1

max
{

0, pkpa(Γ2) lim sup|ξ|→+∞
G(ξ)
ξp

}



 ,

such that for each µ ∈ [0, η[ the problem (Mλ,µ) admits at least three weak solutions.
Proof. Our aim is to apply Theorem 2.2. To this end, fix λ, µ and g satisfying our
assumptions. So, our end is to verify conditions (a1) and (a2) of Theorem 2.2. We
observe that Φ and Ψ, as given in Section 2 satisfy all regularity assumptions requested
in Theorem 2.2 and that the critical points in X of the functional Iλ = Φ− λΨ are
precisely the weak solutions of problem (Mλ,µ). Now, define

u(x) =





0 if x ∈ Ω \B(x0, R),
d

R(1−µ) (R− |x− x0|) if x ∈ B(x0, R) \B(x0, µR),
d if x ∈ B(x0, µR),

and put r = 1
p

(
c
k

)p.
Clearly, u ∈ X, and one has

Ψ(u) =
∫

B(x0,R)\B(x0,µR)

F

(
x,

d

R(1− µ) (R− |x− x0|)
)
dx+

∫

B(x0,µR)

F (x, d) dx

≥
∫

B(x0,µR)

F (x, d) dx,

and

Φ(u) = 1
p

(
d

R

)p [
ωRµ

nσ(p, n) + 1
(1 + µ)p

∫

B(x0,R)\B(x0,µR)

q(x) |R− |x− x0|p| dx

+Rp
∫

B(x0,µR)

q(x)dx
]

= 1
p

(
d

kδ

)p
.

Moreover, from c < d and (3.1) one has δc < d. Indeed, arguing by a contradiction,
if δc ≥ d,

∫
Ω max|ξ|≤c F (x, ξ)dx

cp
≥
∫

Ω F (x, c)dx
cp

≥
∫

Ω F (x, d)dx
cp

≥
∫
B(x0,µR) F (x, d)dx

cp
≥ δp

∫
B(x0,µR) F (x, d)dx

dp
,
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and this is an absurd for which our claim is proved. Hence, it follows that

Φ(u) > r. (3.5)
Moreover, for all u ∈ X such that u ∈ Φ−1 (]−∞, r]) and taking (2.1) into account,

one has
|u(x)| < k‖u‖ < k (pr)

1
p = c.

So, since g in nonnegative and owing to (3.2) one has

Ψ(u) =
∫

Ω

F (x, u(x))dx+ µ

λ

∫

Γ2

G(γ(u(x)))dσ ≤
∫

Ω

max
|t|≤c

F (x, t)dx+ µ

λ

∫

Γ2

max
|t|≤c

G(t)dσ

=
∫

Ω

F (x, c)dx+ µ

λ
a(Γ2)G(c),

for all u ∈ X such that u ∈ Φ−1 (]−∞, r]). Hence,

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤
∫

Ω

F (x, c)dx+ µ

λ
a(Γ2)G(c). (3.6)

Therefore, since µ ∈ [0, η[, and owing to (3.5) and (3.6), one has

supu∈Φ−1(]−∞,r]) Ψ(u)
r

≤ pkp
∫

Ω max|ξ|≤c F (x, ξ)dx
cp

+ pkp
µ

λ
a(Γ2)G(c)

cp
<

1
λ

< pkpδp

∫
B(x0,µR) F (x, d) dx

dp
<

Ψ(u)
Φ(u) .

Therefore, hypothesis (a1) of Theorem 2.2 is verified.
Now, since µ < η, we can fix l > 0 such that

lim sup
|ξ|→+∞

G(ξ)
ξp

< l,

and µl < 1
pkpa(Γ2) . Therefore, there exists T ∈ R such that

G(ξ) ≤ lξp + T,

for each (x, ξ) ∈ Ω× R.
Finally, fix 0 < ε < 1

pλkpmeas(Ω) −
µla(Γ2)
λmeas(Ω) . From (3.3) there is a function

hε ∈ L1(Ω) such that
F (x, ξ) ≤ εξp + hε(x),

for each (x, ξ) ∈ Ω× R. It follows that, for each u ∈ X,

Iλ(u) = Φ(u)− λΨ(u) ≥
[

1
p
− λεkpmeas(Ω)− µlkpa(Γ2)

]
‖u‖p − λ‖hε‖1 − µTa(Γ2).
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This leads to the coercivity of Iλ, and condition of Theorem 2.2 is verified.
Since, from (3.7), Theorem 2.2 assures the existence of three critical points for
the functional Iλ, and the proof is complete.

Remark 3.2. We explicitly observe that if we consider

δ̃ := R

k [ωR (µnσ(p, n) + ‖q‖∞Rpgµ(p, n))]
1
p

,

clearly we have δ̃ ≤ δ. So if we assume
∫

Ω max|ξ|≤c F (x, ξ)dx
cp

< δ̃p

∫
B(x0,µR) F (x, d)dx

dp
, (3.7)

the assumption (3.1) is satisfied and, by using (3.7), the coefficient δ̃ is easier to
calculate. From (3.7), simple cases can be obtained, see Theorem 3.4.

We also emphasize that the assumption (3.1) allow us to assume in addition
f(x, 0) 6= 0, x ∈ Ω, for which all the three obtained solutions are non-zero.

Now, we state a second result on the existence of three solutions. Here no asymptotic
condition on g and f are requested.
Theorem 3.3. Let f : Ω×R→ R be an L1-Carathéodory function. Assume that there
exist three nonnegative constants c1, c2 and d, with 2

1
p δc1 < d < 2−

1
p δc2 such that

f(x, ξ) ≥ 0, for all (x, ξ) ∈ Ω× [0, c2], (3.8)
∫

Ω F (x, c1)dx
cp1

<
2
3δ

p

∫
B(x0,µR) F (x, d)dx

dp
, (3.9)

and ∫
Ω F (x, c2)dx

cp2
<

1
3δ

p

∫
B(x0,µR) F (x, d)dx

dp
. (3.10)

Then, for each

λ ∈ Λ2 :=
]

3
2pkpδp

dp∫
B(x0,µR) F (x, d)dx,

1
pkp

min
{

cp1∫
Ω F (x, c1)dx,

cp2∫
Ω F (x, c2)dx

}[
,

and for each nonegative continuous function g : R→ R there exists η > 0 with

η = min
{
cp1 − λpkp

∫
Ω F (x, c1)dx

pkpa(Γ2)G(c1) ,
cp2 − 2λpkp

∫
Ω F (x, c2)dx

2pkpa(Γ2)G(c2)

}
,

such that, for each µ ∈ [0, η[, the problem (Mλ,µ) admits at least three weak solutions
ui, i = 1, 2, 3, such that 0 ≤ ui < c2 for all i = 1, 2, 3.
Proof. Without loss of generality, we can assume f(x, t) ≥ 0 for all (x, t) ∈ Ω×R. Our
aim is to apply Theorem 2.3. To this end, fix λ, µ and g satisfying our assumptions
and take X, Φ and Ψ as in the proof of Theorem 3.1.
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We observe that Φ and Ψ satisfy all regularity assumptions requested in Theorem 2.3
and that the critical points in X of the functional Φ − λΨ are precisely the weak
solutions of problem (Mλ,µ). So, our end is to verify conditions (b1)–(b3) of Theorem 2.3.

We define u(x) as in Theorem 3.1 and put r1 = 1
p

(
c1
k

)p, and r2 = 1
p

(
c2
k

)p.
Arguing as in the proof of Theorem 3.1, we obtain that

Ψ(u) ≥
∫

B(x0,µR)

F (x, d) dx,

and
Φ(u) = 1

p

(
d

kδ

)p
.

Therefore, from 2
1
p δ1c1 < d < 2−

1
p δ2c2 one has

2r1 < Φ(u) < r2
2 . (3.11)

Moreover, for all u ∈ X such that u ∈ Φ−1 (]−∞, ri[) with i = 1, 2 and taking (2.1)
into account, one has

|u(x)| < k‖u‖ < k (pr1)
1
p = ci, with i = 1, 2.

So, since g in nonegative and owing (3.8) one has

Ψ(u) =
∫

Ω

F (x, u(x))dx+ µ

λ

∫

Γ2

G(u(x))dx ≤
∫

Ω

sup
|t|<ci

F (x, t)dx+ µ

λ

∫

Γ2

sup
|t|<ci

G(t)dx

=
∫

Ω

F (x, ci)dx+ µ

λ
a(Γ2)G(ci)dx,

for all u ∈ X such that u ∈ Φ−1 (]−∞, ri[) with i = 1, 2. Hence,

sup
u∈Φ−1(]−∞,ri[)

Ψ(u) ≤
∫

Ω

F (x, ci)dx+ µ

λ
a(Γ2)G(ci). (3.12)

Therefore, since µ ∈ [0, η[, and owing to (3.11) and (3.12), one has
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
≤ pkp

∫
Ω F (x, c1)dx

cp1
+ pkp

µ

λ
a(Γ2)G(c1)

cp1
<

1
λ

<
2
3pk

pδp

∫
B(x0,µR) F (x, d) dx

dp
<

2
3

Ψ(u)
Φ(u) ,

and

2
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
≤ 2pkp

∫
Ω F (x, c2)dx

cp2
+ 2pkpµ

λ
a(Γ2)G(c2)

cp2
<

1
λ

<
2
3pk

pδp

∫
B(x0,µR) F (x, d) dx

dp
<

2
3

Ψ(u)
Φ(u) .

Therefore, hypothesis (b1) and (b2) of Theorem 2.3 are verified.
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Finally, we verify that satisfies assumption (b3) of Theorem 2.3. Let u1 and u2
be two local minima for Φ− λΨ. Then u1 and u2 are critical points for Φ− λΨ, and
so, they are weak solutions for the problem (Mλ,µ). For every positive parameter λ
and for every (x, t) ∈ Ω × [0,+∞[ one has λf(x, t) ≥ 0, hence, owing to the Weak
Maximum Principle (see for instance Lemma 2.1) we obtain u1(x) ≥ 0 and u2(x) ≥ 0,
for all x ∈ Ω. Then, it follows that su1(x) + (1 − s)u2(x) ≥ 0, for all s ∈ [0, 1],
and that λf (x, su1(x) + (1− s)u2(x)) + µg(su1(x) + (1 − s)u2(x)) ≥ 0, and, hence,
Ψ (su1(x) + (1− s)u2(x)) ≥ 0.

From Theorem 2.3, the functional Φ− λΨ has at least three distinct critical points
which are weak solutions of problem (Mλ,µ) and the conclusion is achieved.

Now, we point out some results in the autonomous case. To be precise, let f : R→ R
be a continuous function and consider the following mixed boundary value problem
involving the p-Laplacian




−∆pu+ q(x)|u|p−2u = λf(u) in Ω,
u = 0 on Γ1,
∂u
∂ν = 0 on Γ2.

(AMλ)

Theorem 3.4. Let f : R→ R be a nonnegative continuous function and assume that
there exist two positive constants c and d, with c < d such that, fixed k̂ = δpωµR

meas(Ω)

F (c)
cp

< k̂
F (d)
dp

, (3.13)
and

lim sup
|ξ|→+∞

F (ξ)
ξp

= 0. (3.14)

Then, for each

λ ∈ Λ̃1 :=
] 1
pkpδpωµR

dp

F (d) ,
1

pkpmeas(Ω)
cp

F (c)

[
,

the problem (AMλ) admits at least three weak solutions.
Proof. Our aim is to apply Theorem 3.1 with g = 0 and f depending only on the
second variable. Since f is a nonnegative function, one has

∫
Ω max|ξ|≤c F (ξ)dx

cp
=
∫

Ω F (c)dx
cp

= meas(Ω)F (c)
cp

,

and

δp

∫
B(x0,µR) F (d)dx

dp
= δpωµR

F (d)
dp

,

from condition (3.13) we obtain condition (3.1) of Theorem 3.3. Finally, condition
(3.14) follows from (3.3). Then, for each

λ ∈ Λ̃1 :=
] 1
pkpδpωµR

dp

F (d) ,
1

pkpmeas(Ω)
cp

F (c)

[

the problem (AMλ) admits at least three weak solutions. In particular, by Lemma 2.1
(see also [4, Lemma 2.3]) we obtain that the solutions are nonegative.
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Theorem 3.5. Let f : R→ R be a nonnegative continuous function and assume that
there exist three positive constants c1, c2 and d, with 2

1
p δc1 < d < 2−

1
p δc2 such that

F (c1)
cp1

<
2
3
δpωµR
m(Ω)

F (d)
dp

, (3.15)

F (c2)
cp2

<
1
3
δpωµR
m(Ω)

F (d)
dp

. (3.16)

Then, for each

λ ∈ Λ̃2 :=
]

3
2pkpδpωµR

dp

F (d) ,
1

pkpm(Ω) min
{

cp1
F (c1) ,

cp2
F (c2)

}[
,

the problem (AMλ) admits at least three weak solutions ui, i = 1, 2, 3, such that
0 ≤ ui < c2 for all i = 1, 2, 3.

Proof. Our aim is to apply Theorem 3.3 with g = 0 and f depending only of the second
variable. Since f is a nonnegative function, one has

∫
Ω max|ξ|≤c1 F (ξ)dx

cp1
=
∫

Ω F (c1)dx
cp1

= meas(Ω)F (c1)
cp1

,

∫
Ω max|ξ|≤c2 F (ξ)dx

cp2
=
∫

Ω F (c2)dx
cp2

= meas(Ω)F (c2)
cp2

,

and

δp

∫
B(x0,µR) F (x, d)dx

dp
= δp

∫
B(x0,µR) F (d)dx

dp
= δpωµR

F (d)
dp

,

from which and from conditions (3.15) and (3.16) we have conditions (3.9) and (3.10).
Then, for each

λ ∈ Λ̃2 :=
]

3
2pkpδpωµR

dp

F (d) ,
1

pkpm(Ω) min
{

cp1
F (c1) ,

cp2
F (c2)

}[

the problem (AMλ) admits at least three weak solutions ui, i = 1, 2, 3, such that
0 ≤ ui < c2 for all i = 1, 2, 3.

Finally, we point out the proof of Theorem 1.1, in the Introduction.

Proof. Our aim is to apply Theorem 3.5. Fix λ ∈ ]λ∗,+∞[, then there is d > 0 such
that

λ >
3

2pkpδpωµR
dp

∫ d
0 f(ξ)dξ

.

Then, from (1.1), there is c1 < 2−
1
p δ−1d such that

pkpm(Ω)F (c1)
cp1

<
1
λ
<

2
3pk

pδpωµR
F (d)
dp

.
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Moreover, there is c2 > 2
1
p δ−1d such that

2pkpm(Ω)F (c2)
cp2

<
1
λ
<

2
3pk

pδpωµR
F (d)
dp

.

Hence, from Theorem 3.5 for each λ ∈ ]λ∗,+∞[ the problem (AMλ) admits at least
three nonnegative weak solutions.

Example 3.6. Let Ω =
{
x ∈ R3 : |x| < 1

}
, put p = 4, and

f(u) =





e2

24 t
4 if t ≤ 2,

et if 2 < t ≤ 23,
e23

23 t
2 if t ≥ 23.

Consider the following problem




−∆4u+ |u|2u = λf(u) in Ω,
u = 0 on Γ1,
∂u
∂ν = 0 on Γ2.

(3.17)

We can choose µ = 1
2 and, as a simple computation shows, we have

B(µ,1)(n, p+ 1) = B( 1
2 ,1)(3, 5) = 1

27
29
105 ,

σ(p, n) = σ(4, 3) = 112,

ωR = ω1 = 4
3π.

Since q(x) = 1, then

δ = R

k
[
ωR

(
µnσ(p, n) + 1

(1−µ)pnR
pB(µ,1)(n, p+ 1) +Rpµn

)] 1
p

,

with

k1 =
(

25 · 33

π

) 1
4

.

Then δ4 = 5·7
28·32·83 .

Put c = 1, d = 3e3 and we prove that all conditions of Theorem 3.1 hold. Indeed,
∫

Ω max|ξ|≤c F (x, ξ)dx
cp

= e2

24 · 5

∫

Ω

max
|ξ|≤1

ξ5dx = e2

22 · 5
π

3 .

δ

∫
B(x0,µR) F (x, d)dx

dp
= 5 · 7

28 · 32 · 83

∫
B(0, 12 )

(
e3e2 − 3

5e
2
)
dx

(3e2)4

= 5 · 7
29 · 38 · 83 · e8

(
e3e2 − 3

5e
2
)
π,
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finally

lim sup
|ξ|→+∞

[
sup
x∈Ω

F (x, ξ)
ξp

]
= lim sup
|ξ|→+∞

[
2
5e

2 + e23 − e2 + e23

3·232 ξ
3 − 23

3 e
23

ξ4

]
= 0.

Then, owing to Theorem 3.1, for each

λ ∈
]

22 · 35 · 83
5 · 7

e8

e3e2 − 3
5e

2 ,
5

25 · 32e2

[

the problem (3.17) admits at least three weak solutions.
Example 3.7. Let Ω =

{
x ∈ R3 : |x| < 1

}
, put p = 4, and consider the following

problem 



−∆4u+ |u|2u = λ|x|
(
|u|3
u2+1 − |u|3e−|u|

)
in Ω,

u = 0 on Γ1,
∂u
∂ν = 0 on Γ2.

(3.18)

We can choose µ = 1
2 and, as a simple computation shows, we have

lim
ξ→0+

f(ξ)
ξp−1 = lim

ξ→0+

(
1

ξ2 + 1 − e
−ξ
)

= 0.

and
lim

ξ→+∞
f(ξ)
ξp−1 = lim

ξ→+∞

(
1

ξ2 + 1 − e
−ξ
)

= 0.

Finally, we observe that

λ∗ = 3
2pkpδpωµR

inf
d>0

d4

∫ d
0

(
ξ3

ξ2+1 − ξ3e−ξ
)
dξ

= 3 · 83
22 · 5 · 7 inf

d>0

d4

1
2 (d2 − ln(d2 + 1)) + e−d(d3 + 3d2 + 6d+ 6)− 6

.

Then, owing to Theorem 1.1, for each

λ >
3 · 83

22 · 5 · 7 inf
d>0

d4

1
2 (d2 − ln(d2 + 1)) + e−d(d3 + 3d2 + 6d+ 6)− 6

the problem (3.18) admits at least three nonnegative weak solutions. In
particular, the problem





−∆4u+ |u|2u = 50|x|
(
|u|3
u2+1 − |u|3e−|u|

)
in Ω,

u = 0 on Γ1,
∂u
∂ν = 0 on Γ2,

admits at least three nonnegative weak solutions.



Nonlinear elliptic equations involving the p-Laplacian. . . 173

Acknowledgements
The authors have been partially supported by the “Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” of the “Istituto Nazionale
di Alta Matematica” (INdAM ). In particular, the last author is holder of a postdoc-
toral fellowship from the INdAM/INGV research project “Strategic Initiatives for the
Environment and Security – SIES”.

REFERENCES

[1] G. Barletta, R. Livrea, N.S. Papageorgiou, Bifurcation phenomena for the positive
solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear
Convex Anal. 17 (2016), 1497–1516.

[2] G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations
involving the p-Laplacian, Arch. Math. 80 (2003), 424–429.

[3] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic prob-
lems with discontinuous nonlinearities, J. Differential Equations 244 (2008), 3031–3059.

[4] G. Bonanno, G. D’Aguì, Mixed elliptic problems involving the p-Laplacian with nonho-
mogeneous boundary conditions, Discrete Contin. Dyn. Syst. 37 (2017) 11, 5797–5817.

[5] G. Bonanno, G. D’Aguì, N.S. Papageorgiou Infinitely many solutions for mixed elliptic
problems involving the p-Laplacian, Adv. Nonlinear Stud. 15 (2015), 939–950.

[6] G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable
functions with a weak compactness condition, Appl. Anal. 89 (2010), 1–10.

[7] V. Bonfim, A.F. Neves, A one-dimensional heat equation with mixed boundary conditions,
J. Differential Equations 139 (1997), 319–338.

[8] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann bound-
ary conditions, J. Funct. Anal. 199 (2003), 468–507.

[9] J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary
condition, J. Funct. Anal. 183 (2001), 231–244.

[10] G. D’Aguì, S.A. Marano, N.S. Papageorgiou, Multiple solutions to a Robin problem
with indefinite weight and asymmetric reaction, J. Math. Anal. Appl. 433 (2016) 2,
1821–1845.

[11] J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for
some singularly perturbed mixed problems: Asymptotics of minimal energy solutions,
Ann. I. H. Poincaré – AN 27 (2010), 37–56.

[12] R. Haller-Dintelmann, H.C. Kaiser, J. Rehberg, Elliptic model problems including mixed
boundary conditions and material heterogeneities, J. Math. Pures. Appl. 89 (2008), 25–48.



174 Gabriele Bonanno, Giuseppina D’Aguì, and Angela Sciammetta

[13] I. Mitrea, M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and
Besov spaces in non-smooth domains, Trans. Amer. Math. Soc. 359 (2007), 4143–4182.

[14] N.S. Papageorgiou, V.D. Radulescu, Nonlinear nonhomogeneous Robin problems with
superlinear reaction term, Adv. Nonlinear Stud. 16 (2016), 737–764.

[15] N.S. Papageorgiou, V.D. Radulescu, Multiplicity of solutions for nonlinear nonhomoge-
neous Robin problems, Proc. Amer. Math. Soc. 146 (2018), 601–611.

Gabriele Bonanno
bonanno@unime.it

University of Messina
Department of Engineering
C. da Di Dio (S. Agata), 98166 Messina, Italy

Giuseppina D’Aguì
dagui@unime.it

University of Messina
Department of Engineering
C. da Di Dio (S. Agata), 98166 Messina, Italy

Angela Sciammetta
angela.sciammetta@unipa.it

University of Palermo
Department of Mathematics and Computer Science
Via Archirafi 34, 90123 Palermo, Italy

Received: October 23, 2018.
Accepted: October 30, 2018.


