Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Large-signal input characteristics of three DC–DC converter types: buck, boost and flyback working in the continuous conduction mode (CCM), obtained by simulations and measurements are investigated. The results of investigations are presented in the form of the analytical formulas and the exemplary results of the measurements and two forms of simulations: based on the full description of the converter components and on the averaged models. The parasitic resistances of the converter components are included in the simulations and their influence on the simulation results is discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
739--750
Opis fizyczny
Bibliogr. 20 poz., rys., wz.
Twórcy
autor
- Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
autor
- Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
autor
- Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
autor
- Department of Electronics and Computer Science Koszalin University of Technology Śniadeckich Street 2, 75-453 Koszalin, Poland
Bibliografia
- [1] Erickson R.W., Maksimovic D., Fundamentals of Power Electronics, 2-nd Edition, Kluwer (2002).
- [2] Kazimierczuk M.K., Pulse-Width Modulated DC–DC Power Converters, J. Wiley (2008).
- [3] Middlebrook R.D., Čuk S., A general unified approach to modeling switching-converter power stages, Proc. IEEE Power Electronic Specialists Conference, pp. 18–34 (1976).
- [4] Middlebrook R.D., Small-Signal Modeling of Pulse-Width Modulated Switched-Mode Power Conwerters, Proc. IEEE, vol. 76, no. 4, pp. 343–354 (1988).
- [5] Vorperian V., Simplified Analysis of PWM Converters using Model of PWM Switch, Part I: Continuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490–496 (1990).
- [6] Vorperian V., Simplified analysis of PWM converters using the model of the PWM switch, Part II: Discontinuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497–505 (1990).
- [7] Maksimowic D., Stankovic A.M, Thottuvelil V.J., Verghese G.C., Modeling and Simulation of Power Electronic Converters, Proc. IEEE, vol. 89, no. 6, pp. 898–912 (2001).
- [8] Janke W., Averaged Models of Pulse-Modulated DC–DC Converters, Part II. Models Based on the Separation of Variables, Archives of Electrical Engineering, vol. 61, no. 4, pp. 633–654 (2012).
- [9] Janke W., Equivalent circuits for averaged description of DC–DC switch-mode power converters based on separation of variables approach, Bulletin of the Polish Academy of Sciences, vol. 61, no. 3 (2013).
- [10] Suntio T., On Dynamic Modeling of PCM-Controlled Converters – Buck Converter as an Example, IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5502–5518 (2018).
- [11] Zhang X., Impedance Control and Stability of DC–DC Converter Systems, PhD Thesis, University of Sheffield (2016).
- [12] De Gusseme K., Van de Sype D.M., Van den Bossche A.P.M., Melkebeek J.A., Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter, IEEE Transactions on Industrial Electronics, vol. 54, pp. 858–865 (2007).
- [13] Enrique J.M., Duran E., Sidrach-de-Cardona M., Andu´jar J.M., Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies, Elsevier Ltd, Solar Energy 81, pp. 31–38 (2007).
- [14] Shu Fan Lim, Khambadkone A.M., A Simple Digital DCM Control Scheme for Boost PFC Operating in Both CCM and DCM, IEEE Transactions on Industrial Electronics, vol. 47, pp. 1802–1812 (2011).
- [15] Kazimierczuk M.K., Cravens R., Reatti A., Closed-loop input impedance of PWM buck-derived DC– DC converters, IEEE International Symposium on Circuits and Systems, ISCAS’94, vol. 6, pp. 61–64 (1994).
- [16] Kim D., Son D., Choi B., Input Impedance Analysis of PWM DC-to-DC Converters, IEEE 21st APEC, pp. 1339–1346 (2006).
- [17] Pidaparthy S.K., Choi B., Input Impedances of DC–DC Converters: Unified Analysis and Application Example, Journal of Power Electronics, vol. 16, no. 6, pp. 2045–2056 (2016).
- [18] Kewei Huang, Jie Li, Ningjun Fan, Yuebirr Li, Xiaolirr Hu, Luo Wu, Modeling Analysis and Simulation of High-voltage Flyback DC–DC Converter, IEEE International Symposium on Industrial Electronics, pp. 813–818 (2009).
- [19] Janke W., Bączek M., Kraśniewski J., Input characteristics of a non-ideal DC–DC flyback converter, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 67, no. 5, pp. 841–849 (2019).
- [20] Janke W., Bączek M., Kraśniewski J., Large-signal averaged models of the non-ideal flyback converter derived by the separation of variables, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 1, pp. 81–88 (2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d17da0f-1a84-4bfd-ac86-930411349543