PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, with the aid of the computerized symbolic computation, we present an extended generalized hyperbolic-function method. Being concise and straightforward, it can be applicable to seek more types of solutions for certain nonlinear evolution equations (NLEES). In illustration, we choose the generalized Hamiltonian equations and the (2 + 1)-dimensional Nizhnik- Novikov-Veselov (NNV) equations to demonstrate the validity and advantages of the method. As a result, abundant new exact solutions are obtained including soliton-like solutions, traveling wave solutions etc. Themethod can be also applied to other nonlinear partial differential equations (NPDEs).
Wydawca
Rocznik
Strony
501--517
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
autor
  • College of Computer, Jiangxi University of Traditional Chinese Medicine JiangXi 330004, China
autor
  • College of Science, Nanchang University, JiangXi 330031, China
Bibliografia
  • [1] J. G. Liu, Y. Z. Li and G. M. Wei, Auto-Bäcklund transformation and soliton-typed solutions of the generalized Variable-Coefficient KP equation (in Chinese). Chin. Phys. Lett. 23(2006), pp. 1670-1673;W. Penczek, B. Wozna and A. Zbrzezny, Bounded model checking for the universal fragment of CTL. Fund. Inform.51(2002), pp. 135-156.
  • [2] M. Wadati, T. Yajima and T. Iizuka, The theory and applications of the unstable nonlinear Schrödingerequation . Chaos. Solitons. Fractals. 3(1991),pp. 249-271; C. Ballarin and L. C. Paulson, A Pragmatic Approach to Extending Provers by Computer Algebra-with Applications to Coding Theory. Fund. Inform.39(1999), pp.1-20.
  • [3] H. T. Chen and H. Q. Zhang, New multiple soliton-like solutions to the generalized (2+1)-dimensional KPequation. Appl.Math. comput. 157(2004),pp. 765-773; S. Haddad, J. Mairesse and H. T. Nguyen, Synthesisand Analysis of Product-form Petri Nets. Fund. Inform. 122(2013), pp. 147-172.
  • [4] B. Tian and Y. T. Gao, Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. lett. A. 340(2005),pp. 243-250.
  • [5] G. Birk, The onset of Rayleigh-Taylor instabilities in magnetized partially ionized dense dusty plasmas. Phys. Plasmas. 9(2002), pp. 745-747.
  • [6] E. J. Parkes and B. R. Duffy, Travelling solitary wave solutions to a compound KdV-Burgers equation. Phys.Lett. A. 229(1997), pp. 217-220; J. C. Delvenne, P. Kurka and V. Blondel, Decidability and Universality in Symbolic Dynamical Systems. Fund. Inform. 74(2006), pp. 1-28.
  • [7] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vriesequation. Phys. Rev. Lett. 19(1967), pp. 1095-1097.
  • [8] G. L. Lamb, Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium . Rev.Mod. Phys. 43(1971), pp. 99-124.
  • [9] M. Wadati, H. Sanuki and K. Konno, Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws. Prog. Theor. Phys. 53 (1975), pp. 419-436.
  • [10] J. Weis, M. Tabor and G. Garnevale, The painlevé property for partial differential equations. J. Math. Phys.24(1983), pp. 522-526.
  • [11] E. G. Fan and H. Q. Zhang, A note on the homogeneous balance method. Phys. Lett. A. 246(1998), pp.403-406.
  • [12] H. B. Lan and K. L. Wang, Exact solutions for two nonlinear equations: I. J. Phys. A: Math. Gen. 23(1990),pp. 3923-3928.
  • [13] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev.Lett. 27(1971), pp. 1192-1194.
  • [14] A. M. Wazwaz, The tanh method and the sine-cosine method for solving the KP-MEW equation. Int. J.Comput. Math. 82(2005), pp. 235-246.
  • [15] M. Boiti and G. Tu, A simple approach to the Hamiltonian structure of soliton equations 111-A new hierarchy.IL. Nuovo. Cimento. B. 75(1983), pp. 145-160.
  • [16] G. Tu, A new hierarchy of coupled degenerate Hamiltonian equations. Phys. Lett. A. 94(1983), pp. 340-342.
  • [17] W. Ma, The generalized Hamiltonain structure of a hierarchy of nonlinear evolution equations. Kexue Tongbao. 32(1987), pp. 1003-1004.
  • [18] Z. Chen, On the Painlevproperty and auto-Bäcklund transformation of Tu and Boiti-Tu equations. Comm.Appl. Math. Comput. 4(1990), pp. 71-76.
  • [19] W. Ma, Exact solutions to Tu system through Painlevé analysis. J. Fudan. Univ (Natural Sci). 33(1994), pp.319-326.
  • [20] B. Tian and Y. T. Gao, Extending the generalized tanh method to the generalized Hamiltonian equations: New soliton-like solutions. Appl. Math. Lett. 10(1997), pp. 125-127.
  • [21] Y. Li and C.Tian, The Bäcklund transformation and soliton solution of a nonlinear evolution equations. Kexue Tongbao (Lett). 29(1984), pp. 1556-1557.
  • [22] A. P. Veselov and S. P. Novikov, Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Sov. Math. Dokl. 30(1984), pp. 588-591.
  • [23] Y.J. Ren and H.Q. Zhang, A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation. Chaos. Solitons. Fractals.27 (2006), pp. 959-979.
  • [24] Y.J. Ren and H.Q. Zhang, New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2+1)-dimensional NNV equation. Phys. Lett. A. 357(2006), pp. 438-448.
  • [25] Z. P. Yan, A class of doubly periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation. Phys. Lett. A. 337(2005), pp. 55-60.
  • [26] L.P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem. Sov. Phys. Dokl. 25(1980), pp. 706-708.
  • [27] S.P. Novikov and A.P. Veselov, Two-dimensional Schrödinger operator: Inverse scattering transform and evolutional equations. Physica. D. 18(1986), pp. 267-273.
  • [28] M. Boiti, J.J.P. Leon, M. Manna and F. Pempinelli, On the spectral transformof a Korteweg-deVries equationin two spatial dimensions. Inv. Problems. 2(1986), pp. 271-280.
  • [29] Y. Tagami, Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation. Phys. Lett. A.141(1989), pp. 116-120; X. B. Hu and Y. Li, Nonlinear superposition formulae of the Ito equation and a model equation for shallow water waves. J. Phys. A: Math. Gen. 24(1991), pp. 1979-1985.
  • [30] X. B. Hu, Nonlinear superposition formula of the Novikov-Veselov equation. J. Phys. A: Math. Gen.27(1994), pp. 1331-1338.
  • [31] T. C. Xia, B. Li and H.Q. Zhang, New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation. Appl. Math. E-Notes. 1 (2001), pp. 139-142.
  • [32] S. Y. Lou, On the coherent structures of the Nizhnik-Novikov-Veselovequation. Phys. Lett. A. 277(2000),pp.94-100.
  • [33] R. Radha, M. Lakshmanan, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys. 35(1994), pp. 4746-4756.
  • [34] D. S. Wang, Y. F. Liu and H. Q. Zhang, Appl. Math. Comput. 168(2005), pp. 823-847.
  • [35] D. S.Wang and H. Q. Zhang,auto-Bäcklund transformation and new exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation. Int. J. Mod. Phys. C. 393(2005),DOI: 10.1142/S0129183105007200.
  • [36] Y. T. Gao and B. Tian, Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics. Comput. Phys. Comm.133(2001), pp. 158-164.
  • [37] Y. Elcin and B. Ahmet, Exact solutions of coupled nonlinear evolution equations. Chaos. Solitons. Fractals.37(2008), pp. 842-848.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d1304d4-0723-4cbc-a595-ab38c4b47524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.