PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal stresses in a multi-layered spherical tank with a slowly graded structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The central-symmetrical problem of thermoelasticity for a multi-layered spherical tank is considered. The thermal stresses were caused by a temperature difference between the inner and outer surfaces of the tank. Two approaches to solving this problem have been proposed. In the first approach, the boundary problem defined in the components of a considered inhomogeneous spherical tank was solved. In the second approach, the homogenization method with microlocal parameters was used. Good agreement between the solutions was obtained.
Rocznik
Strony
274--281
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, Białystok 15-351, Poland
Bibliografia
  • 1. Achenbach JD. A theory of elasticity with microstructure for direc-tionally reinforces composites. Wien: Springer-Verlag; 1975.
  • 2. Bedford A, Stern M. Toward a diffusing continuum theory of compo-site materials. J. Appl. Mech. 1971; 38: 8-14.
  • 3. Bensoussan A, Lions JL, Papanicolau AG. Asymptotic methods in periodic structures. Amsterdam: North-Holland 1978.
  • 4. Bufler H, Krennerknecht H. Prestrained elastic laminates: defor-mations, stability and vibrations, Acta Mechanica. 1999; 48: 1-30.
  • 5. Chen B, Tong L. Sensitivity analysis of heat conduction for function-ally graded materials. Materials & Design. 2004; 25(8): 663-672.
  • 6. Gan H, Orozco CE, Herkovich CT. A strain-compatibile method for micromechanical analysis of multi-phase composites, Int. J. Solids Struct. 2000; 37: 5097-5122.
  • 7. Ganczarski A, Skrzypek J. Mechanika nowoczesnych materiałów, Kraków: W-wo Politechniki Krakowskiej 2013.
  • 8. Jihov VV, Kozlov SM, Oleynik OA. Homogenization of differential operators and integral functionals. Berlin: Springer 1994.
  • 9. Kaczyński A. Three-dimensional thermoelastic problems of interface crack in periodic two-layered composites. Engineering Fracture Me-chanics. 1994; 62(6): 783-800.
  • 10. Kirchhoff G, Göbel Th, Bahr H-A, Balke H, Wetzig K, Bartsch K. Damage analysis for thermally cycled (Ti, Al)N coatings – estimation of strength and interface fracture toughness. Surface Coat. Tech. 2004; 179: 39-46.
  • 11. Kushnir RM, Yasinskyy AV, Tokovyy YV. Effect of material properties in the direct and inverse thermomechanical analyses of multilayer functionally graded solids. Adv. Eng. Mater. 2022; 24(5): 110-115.
  • 12. Kulchytsky-Zhyhailo R, Matysiak SJ. On heat conduction problem in a semi–infinite periodically laminated layer. Int. Comm. Heat Mass Transfer. 2005; 32: 123-132.
  • 13. Kulchytsky-Zhyhailo R, Matysiak SJ. On some heat conduction problem in a periodically two–layered body. Comparative results. Int. Comm. Heat Mass Transfer. 2005; 32: 332-340.
  • 14. Kulchytsky-Zhyhailo R, Kolodziejczyk W. On the axisymmetric con-tact problem of pressure of a rigid sphere into a periodically two-layered semi-space. Int. J. Mech. Sci. 2007; 49: 704-711.
  • 15. Kulchytsky-Zhyhailo R, Matysiak SJ, Perkowski DM. On displace-ments and stresses in a semi-infinite laminated layer: comparative results. Meccanica. 2007; 42: 117-126.
  • 16. Kulchytsky-Zhyhailo R, Matysiak SJ, Perkowski DM. On some ther-moelastic problem of a nonhomogeneous long pipe. Int. J. Heat and Technology. 2021; 39(5): 1430-1442.
  • 17. Lee WY, Stinton DP, Berndt CC, Erdogen F, Lee Y–D, Mutasin Z. Concept of functionally graded materials for advanced thermal barrier coating applications. J. Amer. Ceram. Soc. 1996; 79: 3003-3012.
  • 18. Matysiak SJ, Woźniak Cz. Micromorphic effects in a modeling of periodic multilayered elastic composites. Int. J. Engng. Sci. 1987; 25: 549-559.
  • 19. Nowacki W. Thermoelasticity. Warszawa: PWN; 1986.
  • 20. Paley M, Aboudi J. Micromechanical analysis of composites by generalized method of cells. Mechanics and Materials. 1992; 14: 127-139.
  • 21. Reuss A. Berechnung der Flissgrenze von Mischk ristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. angew. Math. Mech. 1929; 9: 49-58.
  • 22. Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer-Verlag 1989.
  • 23. Schulz U, Bach FW, Tegeder G. Graded coating for thermal, wear and corrosion barriers. Mater. Sci. Eng. Ser. A. 2003; 362(1-2): 61-80.
  • 24. Szymczyk J, Woźniak Cz. Continuum modelling of laminates with a slowly graded microstructure. Arch. Mech. 2006; 58(4-5): 445-458.
  • 25. Timoshenko S, Goodier JN. Theory of elasticity. New York: McGraw-Hill Book Company 1951.
  • 26. Wang BL, Han JC, Du SY. Crack problems for functionally graded materials under transient thermal loading. Journal of Thermal Stress-es. 2000; 23(2): 143-168.
  • 27. Voigt W. Über die Beziehungen zwischen beiden Elastizitätskon-stanten isotroper Körpär. Wied. Ann. 1889; 38: 573-587.
  • 28. Woźniak Cz. A nonstandard method of modelling of thermoelastic periodic composites. Int. J. Engng. Sci. 1987; 25: 483-499.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d0c384d-58d3-4974-8b9c-dca3e23b528c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.