PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ferric Oxyhydroxide as Fouling Prevention Reagent for Low-Pressure Membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Membrane technologies are very popular both in drinking water and wastewater treatment due to their significant advantages. However, colloidal fouling is one of the main disadvantages of low-pressure membranes. Fine particle ferric oxyhydroxide effectively protected membrane and adsorb humates, phosphates, arsenates, etc. Dividing of adsorption and microfiltration into two stages was the recommended regime. Mixing with adsorbent was the first one and separation on the membrane was the second stage. The adsorbent with immobilized impurities formed protective layer on the membrane surface. The non-adsorbed organic matter was left on this thickness. During backwash, water flow removed the adsorbent with immobilized pollutants. Afterwards, membrane was as clean as before filtration.
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Faculty of Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy pr., Kyiv, 03056, Ukraine
  • Faculty of Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy pr., Kyiv, 03056, Ukraine
  • Faculty of Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy pr., Kyiv, 03056, Ukraine
  • Faculty of Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy pr., Kyiv, 03056, Ukraine
Bibliografia
  • 1. Blandin, G., Vervoort, H., Le-Clech, P., & Verliefde, A. R. D. 2016. Fouling and cleaning of high permeability forward osmosis membranes. Journal of Water Process Engineering, 9, 161–169. http://doi. org/https://doi.org/10.1016/j.jwpe.2015.12.007.
  • 2. Cai, Z., Wee, C., & Benjamin, M. M. 2013. Fouling mechanisms in low-pressure membrane filtration in the presence of an adsorbent cake layer. Journal of Membrane Science, 433, 32–38. http://doi. org/10.1016/j.memsci.2013.01.007.
  • 3. Fane, A. G., Wang, R. and Hu, M. X. 2015. Synthetic Membranes for Water Purification: Status and Future. Angew. Chem. Int. Ed., 54: 3368–3386. doi:10.1002/anie.201409783.
  • 4. Kim, J., Cai, Z., & Benjamin, M. M. 2008. Effects of adsorbents on membrane fouling by natural organic matter. Journal of Membrane Science, 310(1–2), 356–364. http://doi.org/10.1016/j.memsci.2007.11.007.
  • 5. Kim, J., Deng, Q., & Benjamin, M. M. 2008. Simultaneous removal of phosphorus and foulants in a hybrid coagulation/membrane filtration system. Water Research, 42(8–9), 2017–2024. http://doi. org/10.1016/j.watres.2007.12.017.
  • 6. Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S. 2015. Chapter One – Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In D. L. Sparks (Ed.) (Vol. 130, pp. 1–140). Academic Press. http://doi.org/https://doi.org/10.1016/bs.agron.2014.10.005.
  • 7. Litynska, M & Maletskyi, Z. 2017. Characterization of iron-based fine particle adsorbents. Book of abstracts of III Ukrainian-Polish scirntific conference “Membrane and sorption processes and technologies”, pp. 167–169.
  • 8. Litynska, M., Antoniuk, R., Tolstopalova, N., & Astrelin, I. 2017. Powder iron-containing adsorbents for arsenic removal: influence of heating. Process Eng. J., 1(2), 68–72.
  • 9. Litynska, M., Antoniuk, R., Tolstopalova, N., & Astrelin, I. 2018. Method of synthesis of fine-particle iron (III) oxyhydroxide for combined sorptionmembrane water treatment technology. Patent UA 123917 U, pp. 1–4 (in Ukrainian).
  • 10. Liu, T., Yang, B., Graham, N., Lian, Y., Yu, W., & Sun, K. 2017. Mitigation of NOM fouling of ultrafiltration membranes by pre-deposited heated aluminum oxide particles with different crystallinity. Journal of Membrane Science, 544, 359–367. http://doi.org/https://doi.org/10.1016/j.memsci.2017.09.048.
  • 11. Pivokonsky, M., Safarikova, J., Baresova, M., Pivokonska, L., & Kopecka, I. 2014. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 51, 37–46. http://doi.org/https://doi.org/10.1016/j.watres.2013.12.022.
  • 12. Radaei, E., Liu, X., Tng, K. H., Wang, Y., Trujillo, F. J., & Leslie, G. 2018. Insights on pulsed bubble control of membrane fouling: Effect of bubble size and frequency. Journal of Membrane Science, 554, 59–70. http://doi.org/https://doi.org/10.1016/j. memsci.2018.02.058.
  • 13. Rosario-Ortiz, F. L., Snyder, S. A., & Suffet, I. H. (Mel). 2007. Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries. Water Research, 41(18), 4115– 4128. http://doi.org/https://doi.org/10.1016/j.watres.2007.05.045.
  • 14. She, Q., Wang, R., Fane, A. G., & Tang, C. Y. 2016. Membrane fouling in osmotically driven membrane processes: A review. Journal of Membrane Science, 499, 201–233. http://doi.org/https://doi.org/10.1016/j.memsci.2015.10.040.
  • 15. Shi, W., & Benjamin, M.M. 2009. Fouling of RO membranes in a vibratory shear enhanced filtration process (VSEP) system. Journal of Membrane Science, 331(1–2), 11–20. http://doi.org/10.1016/j.memsci.2008.12.027.
  • 16. Siddiqui, A., Lehmann, S., Bucs, S.S., Fresquet, M., Fel, L., Prest, E.I.E.C., Vrouwenvelder, J.S. 2017. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Water Research, 110, 281–287. http://doi.org/https://doi.org/10.1016/j.watres.2016.12.034.
  • 17. Sim, S.T.V, Taheri, A.H., Chong, T.H., Krantz, W.B., & Fane, A.G. 2014. Colloidal metastability and membrane fouling – Effects of crossflow velocity, flux, salinity and colloid concentration. Journal of Membrane Science, 469, 174–187. http://doi.org/https://doi.org/10.1016/j.memsci.2014.06.020.
  • 18. Su, X., Li, W., Palazzolo, A., & Ahmed, S. 2018. Concentration polarization and permeate flux variation in a vibration enhanced reverse osmosis membrane module. Desalination, 433, 75–88. http://doi.org/https://doi.org/10.1016/j.desal.2018.01.001.
  • 19. Sun, W., Liu, J., Chu, H., & Dong, B. 2013. Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes, 3(3), 226– 241. http://doi.org/10.3390/membranes3030226.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d09287a-97d9-4893-8468-ec63a144a3ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.