PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concepts of energy use of municipal solid waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The introduction highlights the technologies of converting the chemical energy of biomass and municipal waste into various forms of final energy (electricity, heat, cooling, new fuels) as important in the pursuit of a low -carbon economy, especially for energy and transport sector. The work continues to focus mainly on gasification as a process of energy valorization of the initial form of biomass or waste, which does not imply that other methods of biomass energy use are not considered or used. Furthermore, the article presents a general technological flowchart of gasification with a gas purification process developed by Investeko S.A. in the framework of Lifecogeneration.pl. In addition, selected properties of the municipal waste residual fraction are described, which are of key importance when selecting the technology for its energy recovery. Significant quality parameters were identified, which have a significant impact on the production and quality of syngas, hydrogen production and electricity generation capacity in SOFC cells. On the basis of the research on the waste stream, a preliminary qualitative assessment was made in the context of the possibility of using the waste gasification technology, syngas production with a significant share of hydrogen and in combination with the technology of energy production in oxide-ceramic SOFC cells. The article presents configurations of energy systems with a fuel cell, with particular emphasis on oxide fuel cells and their integration with waste gasification process. An important part of the content of the article is also the environmental protection requirements for the proposed solution.
Rocznik
Strony
70--80
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • INVESTEKO S.A.
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Power Engineering and Turbomachinery, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Bibliografia
  • 1. Al-attab, K.A. & Zainal, Z.A. (2015). Externally fired gas turbine technology: A review. Applied Energy, 138, pp. 474-487, DOI: 10.1016/j.apenergy.2014.10.049
  • 2. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy 87, pp. 1461-1476, DOI: 10.1016/j.apenergy.2009.11.013
  • 3. Regise, A., Muller, C., Schmid, M, Colomar, D., Ortloff, F., Sporl, R., Brisse, A. & Graf, F. (2019). Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation. Energy Conversion and Management, 183, pp. 462-473. DOI: 10.1016/j.enconman.2018.12.101
  • 4. Bartela, Ł., Kotowicz, J. & Dubiel-Jurga, K. (2018). Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine. Energy, 150, pp. 601-616. DOI: 10.1016/j.energy.2018.02.152
  • 5. Chmielniak, T. (2020). Energetyka wodorowa, s.378. PWN, Warszawa.
  • 6. Colpan, C. O., Hamdullahpur, F., Dincer, I. & Yoo, Y. (2010). Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems. I. J. of Hydrogen Energy, 35, pp. 5001-5009. DOI: 10.1016/j.ijhydene.2009.08.083
  • 7. Colpan , C.O. (2009). Thermal Modeling of Solid Oxide Fuel Cell Based Biomass Gasification Systems, Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, Canada, (Thesis).
  • 8. Di Carlo, A., Borello, A. & Bocci, E. (2013). Process simulation of a hybrid SOFC/mGT and enriched air/steam fluidized bed gasifier power plant, I.J.of Hydrogen Energy, 38, pp. 5857-5874. DOI: 10.1016/j.ijhydene.2013.03.005
  • 9. Dong, L., Liu, H. & Riffat, S. (2009). Development of small-scale and micro-scale biomass fuelled CHP systems—a literature review. Appl Therm Eng, 29, pp.2119-26. DOI: 10.1016/j.applthermaleng.2008.12.004
  • 10. Integrated Emission Directive no. 2010/75/UE 24.11.2010.
  • 11. Fortunato B., Camporeale, S.M., Torresi, M. & Fornarelli, F. (2016). A Combined Power Plant Fueled by Syngas Produced in a Downdraft Gasifier, Proceedings of ASME Turbo Expo, GT2016-58159, V003T06A023. DOI: 10.1115/GT2016-58159
  • 12. Fryda, L., Panopoulos, K.D. & Kakaras, E. (2008). Integrated CHP with autothermal biomass gasification and SOFC-MGT. Energy Conversion and Management, 49, pp. 281-290. DOI: 10.1016/j.enconman.2007.06.013
  • 13. Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert,R. & Kolb, T., (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, pp. 1371-1390. DOI: 10.1016/j.renene.2015.07.066
  • 14. Huang, Y., Wang, Y.D., Rezvani, S., McIlveen-Wright, D.R., Anderson, M., Mondol, J., Zacharopolous, A. & Hewitt, N. J. (2013). A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Applied Thermal Engineering, 53, pp. 325-331. DOI: 10.1016/j.applthermaleng.2012.03.041
  • 15. Kupecki, J. (2018). Modelling, Design, Construction, and Operation of Power Generators with Solid Oxide Fuel Cells, s. 261. Springer.
  • 16. Kupecki, J. (2018). Selected problems of mathematical modeling of solid oxide fuel cell stacks during transient operation, p. 133. Wyd. Instytutu Technologii Eksploatacji, (in Polish)
  • 17. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien M. (2017). Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. I.J. of Hydrogen Energy, 4, 2, pp. 3487-3497. DOI: 10.1016/j.ijhydene.2016.07.222
  • 18. Lian, Z.T., Chua, K.J. & Chou, S.K. (2010) A thermoeconomic analysis of biomass energy for trigeneration. Applied Energy, 87, pp. 84-95. DOI: 10.1016/j.apenergy.2009.07.003
  • 19. Maraver, D., Sin, A., Royo, J. & Sebastián, F. (2013). Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Applied Energy, 102, pp. 1303-1313. DOI: 10.1016/j.apenergy.2012.07.012
  • 20. Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P.A., Moller, B., Nielsen, S., Ridjan, I., Karnoe, P., Sperling, K. & Hvelplund, F.K. (2015). Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, pp. 139-154. DOI: 10.1016/j.apenergy.2015.01.075
  • 21. Mauro, A., Arpina, F., Massarotti, N. (2011). Three-dimensional simulation of heat and mass transport phenomena in planar SOFCs. I. J. of Hydrogen Energy, 36, pp. 10288-10301. DOI: 10.1016/j.ijhydene.2010.10.023
  • 22. Menon, V., Janardhanan, V.M., Tisher, S. & Deutschmann, O. (2012). A novel approach to model the transient behaviour of solid-oxide fuel cell stacks. J. of Power Sources, 214 pp. 227-238. DOI: 10.1016/j.jpowsour.2012.03.114
  • 23. Primus, A. & Rosik-Dulewska, C. (2018). Fuel potential of the over-sieve fraction of municipal waste and its role in the national model of waste management. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 105, pp.121-134. DOI:10.24425/124382 (in Polish)
  • 24. Primus, A. & Rosik-Dulewska, C. (2019). Integration of energy and material recovery processes of municipal plastic waste into the national waste management system. Polityka Energetyczna Energy Policy Journal, 22, 4, pp. 129-140. DOI: 10.33223/epj/114741
  • 25. Puig-Arnavat, M, Bruno, J.C. & Coronas, A. (2014). Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Applied Energ,y 114 pp. 845-856. DOI:10.1016/j.apenergy.2013.09.013
  • 26. Kempegowda, R.S., Assabumrungrat, S. & Laosiripojana, N. (2009). Integrated CHP System Efficiency Analysis of Air, Mixed Air- Steam And Steam Blown Biomass Gasification Fuelled SOFC, Proc.of the IASIED International Conf. Modelling, Simulation, and Indentification. October 12 -14, 2009, Beijing, China.
  • 27. Nikdalila, R., Azad, |A.T., Saghir, M., Taweekun, J., Bakar, M.S.A., Reza, M.S. & Azad, A.K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, 119, 109560. DOI: 10.1016/j.rser.2019.109560
  • 28. Rasmussen, J.F.B. & Hagen, A. (2011). The effect of H2S on the performance of SOFCs using methane containing fuel. Fuel Cell, 10, pp. 1135-1142. HAL Id: hal-00576976.
  • 29. Salehi A., Mousavi, S.M., Fasihfar, A. & Ravanbakhsh, M. (2019). Energy, exergy, and environmental (3E) assessments of an integrated molten carbonate fuel cell (MCFC), Stirling engine and organic Rankine cycle (ORC) cogeneration system fed by a biomass-fueled gasifier. I. J. of Hydrogen Energy, 44, pp. 31488-31505. DOI: 10.1016/j.ijhydene.2019.10.038
  • 30. Skorek J. & Kalina J. (2005). Gas cogeneration systems; Wydawnictwo Naukowo-Techniczne; Warszawa, 2005 r. (in Polish)
  • 31. Sipilä, K., Pursiheimo, E., Savola, T., Fogelholm, C.J., Keppo, I. & Pekka A. (2005). Small Scale Biomass CHP Plant and District Heating. Vtt Tiedotteita . Research Notes 2301, Valopaino Oy, Helsinki, 2005. http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2301.pdf
  • 32. Ściążko, M. & Nowak, W. (2017). Municipal waste gasification technologies. Nowa Energia 1. technologie_zgazowania_odpadow_komunalnych_1.pdf (cire.pl)
  • 33. Thilak, N., Iniyan, R.S. & Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15, pp. 3640-3648. DOI: 10.1016/j.rser.2011.06.003
  • 34. Uebbinga, M., Liisa, M., Rihko-Struckmanna, K. & Sundmachera, K. (2019). Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies. Applied Energy, 233-234, pp. 271-282. DOI: 10.1016/j.apenergy.2018.10.014
  • 35. Wielgosiński, G. (2020). Thermal waste conversion, Nowa Energia; Racibórz 2020 r. (in Polish)
  • 36. Wongchanapai, S., Iwai, H., Saito, M. & Yoshida, H. (2012). Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system. Journal of Power Sources, 216, pp. 314-322. DOI: 10.1016/j.jpowsour.2012.05.098
  • 37. Zhang W., Croiset, E., Douglas, P.L., Fowler, M.W & Entchev, E. (2005). Simulation of a tubular solid oxide fuel cells stack using Aspen PlusTM unit operation models. Energy Conversion and Management, 46, pp. 181-196. DOI: 10.1016/j.enconman.2004.03.002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d069bea-5fa4-48b3-80ca-961190e1911d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.