Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objective: The integration of omics technologies has opened new opportunities in toxicological research. This article aims to explore how toxico-proteomics and toxico-metabolomics contribute to the understanding of xenobiotic mechanisms, biomarker discovery, and modern risk assessment frameworks. Methods: Relevant literature was analysed to highlight recent advances in proteomics and metabolomics applied to toxicology. Particular attention was given to mass spectrometry-based approaches, spatial omics, in silico modelling, and combined omics strategies. Case examples from drug- and environment-related toxicology were used to illustrate practical applications. Results: High-resolution mass-spectrometry-based proteomics enables the sensitive detection of changes in protein levels, post-translational modifications, and proteinprotein interactions. Toxico-proteomic studies have clarified mechanisms of cardio-, hepato-, and atd-neurotoxic effects. Metabolomics supports the profiling of low molecular weight compounds and early responses to toxicants. Toxico-metabolomic analyses identified changes related to energy metabolism and amino acid metabolism. In vitro models and zebrafish embryos provided organ-specific insights. Integrating omics data has led to the identification of candidate biomarkers of exposure and toxic effects. Conclusions: Toxico-proteomics and toxico-metabolomics represent powerful tools for toxicology. Their application enhances the sensitivity of toxicity detection, reduces reliance on animal models, and supports the development of predictive strategies. As analytical platforms and computational tools continue to evolve, these disciplines are expected to play an increasingly central role in environmental and biomedical toxicology, with implications for diagnostics, therapeutics, and regulatory demands.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
autor
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University; Gronostajowa street 2, 30-387 Kraków, Poland
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
Bibliografia
- 1. Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteom. 2023;20:32. doi: https://doi.org/10.1186/s12014-023-09424-x.
- 2. Masuda T, Mori A, Ito S, Ohtsuki S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab Pharmacokinet. 2021;36:100361. doi: https://doi.org/10.1016/j.dmpk.2020.09.006.
- 3. Frommelt F, Fossati A, Uliana F, Wendt F, Xue P, Heusel M, et al. DIP-MS: ultra-deep interaction proteomics for the deconvolution of protein complexes. Nat Methods. 2024;21(4):635-47. doi: https://doi.org/10.1038/ s41592-024-02211-y.
- 4. Johnston D, Oppermann H, Jackson J, Levinson W. Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem. 1980;255(14):6975-80.
- 5. Witzmann FA, Parker DN, Jarnot BM. Induction of enoyl-CoA hydratase by LD50 exposure to perfluorocarboxylic acids detected by two-dimensional electrophoresis. Toxicol Lett. 1994;71(3):271-7. doi: https://doi.org/10.1016/0378-4274(94)90113-9.
- 6. Pribil P, Tran K. The power of single-cell proteomics. The Analytical Scientist [Internet]. 2024 Jun [cited 2024 Jun 18]. Available from: https://theanalyticalscientist.com/issues/2024/articles/jun/the-power-of-single-cell-proteomics.
- 7. Merrick BA, Madenspacher JH. Complementary gene and protein expression studies and integrative approaches in toxicogenomics. Toxicol Appl Pharmacol. 2005;207(Suppl 2):189-94. doi: https://doi.org/10.1016/j. taap.2005.01.040.
- 8. Vishnoi S, Matre H, Garg P, Pandey SK. Artificial intelligence and machine learning for protein toxicity prediction using proteomics data. Chem Biol Drug Des. 2020;96(3):902-20. doi: https://doi.org/10.1111/cbdd.13701.
- 9. Qiu T. Mass spectrometry imaging for spatial toxicology research. J Mass Spectrom. 2024;59(12):e5104. doi: https://doi.org/10.1002/jms.5104.
- 10. Yang X, Bartlett MG. Identification of protein adduction using mass spectrometry: protein adducts as biomarkers and predictors of toxicity mechanisms. Rapid Commun Mass Spectrom. 2016;30(5):652-64. doi: https://doi.org/10.1002/rcm.7462.
- 11. Maagdenberg HW, Šícho M, Araripe DA, Luukkonen S, Schoenmaker L, Jespers M, et al. QSPRpred: a flexible open-source quantitative structure-roperty relationship modelling tool. J. Cheminformatics 2024:16;128. doi: https://doi.org/10.1186/s13321-024-00908-y.
- 12. Son A, Park J, Kim W, Yoon Y, Lee S, Ji J, et al. Recent advances in omics, computational models, and advanced screening methods for drug safety and efficacy. Toxics. 2024;12(11):822. doi: https://doi.org/10.3390/ toxics12110822.
- 13. Smith LM, Kelleher NL. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10(3):186-7. doi: https://doi.org/10.1038/nmeth.2369.
- 14. Di Marco F, Cufaro MC, Damiani V, Dufrusine B, Pizzinato E, Di Ferdinando F, et al. Proteomic meta-analysis unveils new frontiers for biomarkers research in pancreatic carcinoma. Oncogenesis. 2025;14(1):3. doi: https://doi.org/10.1038/s41389-025-00547-4.
- 15. Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, et al. A shotgun proteomic-based approach with a Q-Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometer for the assessment of pesticide mixture-induced neurotoxicity on a 3D-developed neurospheroid model from human brain meningiomas: identification of trityl-post-translational modification. J Proteome Res. 2024;23(12):5554-76. doi: https://doi.org/10.1021/acs.jproteome.4c00804.
- 16. Wetmore BA, Merrick BA. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol. 2004;32(6):619-42. doi: https://doi.org/10.1080/01926230490518244.
- 17. Yipel M, İlhan A. Potentiation of toxicology with proteomics: toxicoproteomics. Int J Vet Anim Res. 2022;5(1):36-9. doi: https://doi.org/10.5281/ zenodo.6345210.
- 18. Al Sultan A, Rattray Z, Rattray NJW. Cytotoxicity and toxicoproteomics analysis of thiazolidinedione exposure in human-derived cardiomyocytes. J Appl Toxicol. 2024;44(8):1214-35. doi: https://doi.org/10.1002/jat.4613.
- 19. Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). Aquat Toxicol. 2013;130-131:123-31. doi: https://doi.org/10.1016/j.aquatox.2013.01.012.
- 20. Agwunobi DO, Li M, Wang N, Chang G, Zhang X, Xue X, et al. Proteomic analysis suggests that monoterpenes in lemongrass disrupt Ca2+ homeostasis in Haemaphysalis longicornis leading to mitochondrial depolarization and cytotoxicity. Proteomics. 2022;22(13–14):e2100156. doi: https://doi.org/10.1002/pmic.202100156.
- 21. Brewer CT, Kodali K, Wu J, Shaw TI, Peng J, Chen T. Toxicoproteomic profiling of hPXR transgenic mice treated with rifampicin and isoniazid. Cells. 2020;9(7):1654. doi: https://doi.org/10.3390/cells9071654.
- 22. Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. Plant Meth. 2019;15:135. doi: https://doi.org/10.1186/s13007-019-0515-8.
- 23. Martínez-Esteso MJ , Morante-Carriel J, Samper-Herrero A , Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism Biomolecules. 2024;14:1539. doi: https://doi.org/10.3390/biom14121539.
- 24. Nury C, Merg C, Eb-Levadoux Y, Bovard D, Porchet M, Maranzano F, et al. Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods. 2023;33(5):401-10. doi: https://doi.org/10.1080/15376516.2022.2156005.
- 25. Al Sultan A, Rattray Z, Rattray NJW. Cytotoxicity and toxicoproteomics analysis of thiazolidinedione exposure in human-derived cardiomyocytes. J Appl Toxicol. 2024;44(8):1214-35. doi: https://doi.org/10.1002/jat.4613.
- 26. Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024;250:108120.
- 27. Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, et al. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology. 2022;477:153262. doi: https://doi.org/10.1016/j.tox.2022.153262.
- 28. Mosley JD, Dunn WB, Kuligowski J, Lewis MR, Monge ME, Holland CU, et al. Metabolomics 2023 workshop report: moving toward consensus on best QA/QC practices in LC-MS-based untargeted metabolomics. Metabolomics. 2024;20(4):73. doi: https://doi.org/10.1007/s11306- 024-02135-w.
- 29. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181-9. doi: https://doi. org/10.1080/004982599238047.
- 30. Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1-2):155-71.
- 31. Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, et al. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun. 2023;14(1):4653. doi: https://doi.org/10.1038/s41467-023-40333-7.
- 32. Pandey S. Metabolomics for the identification of biomarkers in endometriosis. Arch Gynecol Obstet. 2024;310(6):2823-7. doi: https://doi.org/10.1007/s00404-024-07796-5.
- 33. Ghanbari R, Sumner S. Using metabolomics to investigate biomarkers of drug addiction. Trends Mol Med. 2018;24(2):197-205. doi: https://doi.org/10.1016/j.molmed.2017.12.005.
- 34. Bernhard A, Poulsen R, Hansen AMB, Hansen M. Toxicometabolomics as a tool for next generation environmental risk assessment. EFSA J. 2023;21(Suppl 1):e211005. doi: https://doi.org/10.2903/j.efsa.2023. e211005.
- 35. Al Sultan A, Rattray Z, Rattray NJW. Toxicometabolomics-based cardiotoxicity evaluation of thiazolidinedione exposure in human-derived cardiomyocytes. Metabolomics. 2024;20:24. doi: https://doi.org/10.1007/s11306-024-02097-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cffbbdb-73dd-4334-b0d2-3af787cb1b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.