Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present sharp bounds for expectations of generalized order statistics with random indices expressed in terms of Tsallis’ entropy. The bounds are attainable and provide new characterizations of some nontrivial distributions. No restrictions are imposed on the parameters of the generalized order statistics model.
Czasopismo
Rocznik
Tom
Strony
253--262
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Institute of Mathematics, Technical University of Łódź, ul. Wólczańska 215, 93-005 Łódź, Poland
autor
- Institute of Mathematics, Technical University of Łódź, ul. Wólczańska 215, 93-005 Łódź, Poland
Bibliografia
- [1] I. Andricioaei and J. E. Straub, Generalized simulated annealing algorithm using Tsallis statistics: Application to conformational optimization of a tetrapeptide, Phys. Rev. E 53 (1996), pp. 3055-3058.
- [2] T. Armitsu and N. Armitsu, PDF of velocity fluctuation in turbulence by a statistics based on generalized entropy, Physica A 305 (2002), pp. 218-226.
- [3] B. C. Arnold and N. Balakrishnan, Relations, Bounds and Approximations for Order Statistics, Springer, Berlin 1989.
- [4] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, Wiley, New York 1998.
- [5] N. Balakrishnan and R. Aggarwala, Progressive Censoring, Birkhäuser, Boston 2000.
- [6] N. Balakrishnan, E. Cramer and U. Kamps, Bounds for means and variances of progressive type II censored order statistics, Statist. Probab. Lett 54 (2001), pp. 301-315.
- [7] E. Cramer, U. Kamps and T. Rychlik, Eualuations of expected generalized order statistics in various scale units, Appl. Math. 29 (2002), pp. 285-295.
- [8] H. A. David and H. N. Nagaraja, Order Statistics, Wiley, New York 2003.
- [9] W. Dziubdziela and B. Kopociński, Limiting properties of the kth record value, Appl. Math. 15 (1976), pp. 187-190.
- [10] M. Fernandes, Nonpmametric entropy-based tests of independence between stochastic processes, preprint, Fundacäo Getulio Vergas, Rio de Janeiro 2000.
- [11] A. Franz and K. H. Hoffmann, Threshold accepting as limit case for a modified Tsallis statistics, Appl. Math. Lett. 16 (2003), pp. 27-31.
- [12] L. Gajek and U. Gather, Moment inequalities for order statistics with applications to characterization of distributions, Metrika 38 (1991), pp. 357-367.
- [13] L. Gajek and A. Okolewski, Sharp bounds on moments of generalized order statistics, Metrika 52 (2000a), pp. 27-43.
- [14] L. Gajek and A. Okolewski, Inequalities for generalized order statistics from some restricted family of distributions, Comm. Statist. Theory Methods 29 (2000b), pp. 2427-2438.
- [15] Z. Grudzień and D. Szynal, On the expected values of the k-th record values and associated characterizations of distributions, Probab. Statist. Decision Theory, Vol. A, Proc. 4-th Pannonian Symp. Math. Statist., Bad Tatzmannsdorf 1983, pp. 119-127.
- [16] E. J. Gumbel, The maxima of the mean largest value and of the range, Ann. Math. Statist. 25 (1954), pp. 76-84.
- [17] H. O. Hartley and H. A. David, Universal bounds for mean range and extreme observation, Ann. Math. Statist. 25 (1954), pp. 85-99.
- [18] J. S. Huang, Sharp bounds for the expected value of order statistics, Statist. Probab. Lett. 33 (1997), pp. 105-107.
- [19] A. Jurlewicz and K. Weron, Relaxation of dynamically correlated clusters, Journal of Non-Crystalline Solids 305 (2002), pp. 112-121.
- [20] M. Kałuszka and A. Okolewski, Sharp exponential and entropy bounds on expectations of generalized order statistics, Metrika 58 (2003), pp. 159-171.
- [21] U. Kamps, A Concept of Generalized Order Statistics, Teubner, Stuttgart 1995.
- [22] O. Ludwig, Über Erwartungsworte und Varianzen von Ranggrössen in kleinen Stichproben, Metrika 38 (1960), pp. 218-233.
- [23] S. Moriguti, A modification of Schwarz's inequality with applications to distributions, Ann. Math. Statist. 24 (1953), pp. 107-113.
- [24] H. N. Nagaraja, On expected values of record values, Austral. J. Statist. 20 (1978), pp. 176-182.
- [25] A. Nakamichi, I. Joichi, O. Iguchi and M. Morikawa, Non-extensive galaxy distributions - Tsallis statistical mechanics, Chaos, Solitons and Fractals 13 (2002), pp. 595-601.
- [26] M. Z. Raqab, Bounds based on greatest convex minorants for moments of record values, Statist. Probab. Lett. 36 (1997), pp. 35-41.
- [27] T. Rychlik, Bounds for expectations of L-estimates, in: Order Statistics: Theory and Methods, N. Balakrishnan and C. R. Rao (Eds.), Handbook of Statistics Vol. 16, North-Holland, Amsterdam 1998, pp. 105-145.
- [28] T. Rychlik, Projecting Statistical Functionals, Springer, New York 2001.
- [29] O. Sotolongo-Costa, A. H. Rodriguez and G. J. Rodgers, Tsallis entropy and the transition to scaling in fragmentation, Entropy 2 (2000), pp. 172-177.
- [30] P. Serra, A. F. Stanton, S. Kais and R. E. Bleil, Comparison study of pivot methods for global optimization, J. Chem. Phys. 106 (1997), pp. 7170-7177.
- [31] É. H. Shiguemori, J. D. S. da Silva, H. F. de Campos Velho and F. M. Ramos, A Parametric Study of a New Regularization Operator: the Non-extensive Entropy, Fourth International Conference on Inverse Problems in Engineering, Rio de Janeiro, Brazil, 2002.
- [32] A. Taruya and M. Sakagami, Gravothermal catastrophe and Tsallis' generalized entropy of selfgravitating systems (II). Thermodynamic properties of stellar polytrope, Physica A 318 (2003), pp. 387-413.
- [33] C. Tsallis, Possible generalization of Baltzmann-Gibbs statistic, J. Statist. Phys. 52 (1988), pp. 479-487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cfd2750-94b0-48af-af43-c279a51cd9b8