PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Computational Maple Library for Skew PBW Extensions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present a computational package developed for making computations involved in many homological applications of the Grbner theory of skew PBW extensions.
Wydawca
Rocznik
Strony
159--191
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Institución Universitaria Politécnico Grancolombiano, Escuela de Ciencias Básicas, Bogotá, Colombia
Bibliografia
  • [1] Acosta J. and Lezama O. Universal property of skew PBW extensions, Algebra and Discrete Mathematics, 2015;20(1):1-12. URL e31a26e4ebb273333fa6df321de872f4b3e3.pdf.
  • [2] Acosta JP, Chaparro C, Lezama O, Ojeda I, and Venegas C. Ore and Goldie theorems for skew PBW extensions, Asian-European J. Math., 2013;6(4):20. URL https://doi.org/10.1142/S1793557113500617.
  • [3] Acosta JP, Lezama O, and Reyes MA. Prime ideals of skew PBW extensions, Revista de la Unin Matemtica Argentina, 2015;56(2):39-55.
  • [4] Apel J, Klaus U. FELIX a special computer algebra system for the computation in commutative and noncommutative rings and modules, 1998.
  • [5] Artamonov V. Derivations of Skew PBW-Extensions, Commun. Math. Stat., 2015;3(4):449-457. doi:10.1007/s40304-015-0067-9.
  • [6] Artamonov V. Quantum polynomials, WSPC Proceedings, 2008. doi:10.1142/9789812790019_0002.
  • [7] Artamonov V. Serre’s quantum problem, Russian Math. Surveys, 1998;53(4):657-730. doi:10.1070/rm1998v053n04abeh000056.
  • [8] Artamonov V. On projective modules over quantum polynomials, Journal of Mathematical Sciences, 1999:93(2):135-148. doi:10.1007/BF02365096.
  • [9] Artamonov V, Lezama O, Fajardo W. Extended modules and Ore extensions, Communications in Mathematics and Statistics, 2016:4(2):189-202. doi:10.1007/s40304-015-0081-y.
  • [10] Artamonov V. General quantum polynomials. In Algebra (Moscow, 1998), Gruyter, Berlin, 2000 pp. 35-48.
  • [11] Artamonov V, and Wisbauer R. Homological properties of quantum polynomials, Algebr. Represent. Theory, 2001;4(3):219-247. doi:10.1023/A:1011458821831.
  • [12] Bell A, and Goodearl K. Uniform rank over differential operator rings and Poincar-Birkhoff-Witt extensons, Pacific Journal of Mathematics, 1988;131(1):13-37. doi:10.2140/pjm.1988.131.13.
  • [13] Bueso J, Gómez-Torrecillas J, and Verschoren A. Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups, Kluwer, 2003. ISBN-978-1-4020-1402-4. doi:10.1007/978-94-017-0285-0.
  • [14] Chaparro C. Valuations of skew quantum polynomials, Asian-European Journal of Mathematics, 2015; 8(2):1550018. URL https://doi.org/10.1142/S1793557115500187.
  • [15] Coutinho SC. A Primer of Algebraic D-moodules, Cambridge University Prees, London Mathematical Society, Student Texts 33, 1995. ISBN-10:0521551196, 13:978-0521551199.
  • [16] Fajardo W, and Lezama O. Elementary matrix-computational proof of Quillen-Suslin for Ore extensions, Fundamenta Informaticae, 2019;164(1):41-59. doi:10.3233/FI-2019-1754.
  • [17] Gallego C. Matrix computations on projective modules using noncommutative Gröbner bases, Journal of Algebra, Number Theory: Advances and Applications, 2016;15(2):101-139. arXiv:1510.05271.
  • [18] Gallego C. Bases de Gröbner no Conmutativas en Extensiones de Poincaré-Birkhoff-Witt, Tesis de Maestra, Universidad Nacional de Colombia, Bogotá, 2009.
  • [19] Gallego C, and Lezama O. Gröbner bases for ideals of σ–PBW extensions, Communications in Algebra, 2011;39(1):50-75. URL https://doi.org/10.1080/00927870903431209.
  • [20] Gallego C, and Lezama O. Projective modules and Gröbner bases for skew PBW extensions, Dissertationes Math., 2017;521:1-50. doi:10.4064/dm747-4-2016.
  • [21] Gallego C, and Lezama O. d-Hermite rings and skew PBW extensions, So Paulo J. Math. Sci. 2016; 10(1):60-72. doi:10.1007/s40863-015-0010-8.
  • [22] Gerdt VP, Robertz D. A Maple package for computing Groebner bases for linear recurrence relations. Nuclear Instruments and Methods in Physics Research Section A, 2006;559(1):215-219. URL https://doi.org/10.1016/j.nima.2005.11.171.
  • [23] Goodearl K, and Warfield R Jr. An Introduction to Noncommutative Noetherian Rings, London Mathematical Society, ST 61, 2004. ISBN-10:0521545374, 13:978-0521545372.
  • [24] Grayson D, Stillman M. Macaulay 2, a software system for research in algebraic geometry, 2013.
  • [25] Greuel GM, Levandovskyy V, Motsak A, Schonemann H. Plural. A Singular 3.1 Subsystem for Computations with Non-commutative Polynomial Algebras, Centre for Computer Algebra, TU Kaiserslautern., 2010.
  • [26] Hirata K, Sugano K. On semisimple extensions and separable extensions over non commutative rings. J. Math. Soc. Japan, 1966:18(4):360-373. URL https://projecteuclid.org/euclid.jmsj/1260480463.
  • [27] Jiménez H. Bases de Gröbner módulos sobre extensiones σ–PBW, Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, 2010.
  • [28] Jiménez H, and Lezama O. Gröbner bases for modules over σ– PBW extensions, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 2016;32(1):39-66.
  • [29] Kredel H, Pesch M. MAS, modula-2 algebra system, 1998.
  • [30] Levandovskyy V. Non-commutatve Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Doctoral Thesis, Universität Kaiserslautern, 2005. URL http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-18830.
  • [31] Lezama O, et al. Skew PBW extensions: Ring and Module Theoretic Properties, Matrix and Grbner Methods, Applications, in preparation.
  • [32] Lezama O, Gallego C. Matrix approach to noncommutative stably free modules and Hermite rings, Algebra and Discrete Mathematics, 2014;18(1):109-137. URL http://mi.mathnet.ru/eng/adm/v18/i1/p109.
  • [33] Lezama O, and Latorre E. Non-commutative algebraic geometry of semi-graded rings, International Journal of Algebra and Computation, 2017;27(4):361-389. URL https://doi.org/10.1142/S0218196717500199.
  • [34] Lezama O, Reyes M. Some homological properties of skew PBW extensions, Communications in Algebra, 2014;42:1200-1230. arXiv:1310.6639.
  • [35] Lezama O, and Venegas H. Some homological properties of skew PBW extensions arising in noncommutative algebraic geometry, Discussiones Mathematicae-General Algebra and Applications, 2017; 37(1):45-57. URL https://doi.org/10.7151/dmgaa.1264.
  • [36] Lezama O. Gröbner bases for modules over Noetherian polynomial commutative rings, Georgian Mathematical Journal, 2008;15(1):121-137. URL https://doi.org/10.1515/GMJ.2008.121.
  • [37] Lezama O. Some aplications of Gröbner bases in homological algebra, São Paulo Journal of Mathematical Sciences, 2009;3(1):25-59. doi:10.11606/issn.2316-9028.v3i1p25-59.
  • [38] Lezama O. Testing flatness and computing the rank of a module using syzygies, Colloqium Mathematicum, 2009;117(1):65-79. doi:10.4064/cm117-1-4.
  • [39] Lezama O. Anillos dimensionales, Boletin de Matemáticas, 1985;19(3):194-220.
  • [40] Li H. Noncommutative Gröbner Bases and Filtered-Graded Transfer, Lecture Notes in Mathematics, Vol.1795, Springer, 2002.
  • [41] Reyes A, and Suárez H. Sigma-PBW extensions of skew Armendariz rings, Advances in Applied Clifford Algebras, 2017;27(4):3197-3224. doi:10.1007/s00006-017-0800-4.
  • [42] Reyes A, and Suárez H. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions, Revista de la Unión Matemática Argentina, 2018;59(1):157-178. doi:10.33044/revuma.v59n1a08.
  • [43] Reyes MA. Ring and Module Theoretic Properties of σ–PBW Extensions, Ph.D. Thesis, Universidad Nacional de Colombia, 2013.
  • [44] Rosenberg AL. Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and its Applications, 330 Kluwer Academic Publishers, second edition, 1995. doi:10.1007/978-94-015-8430-2.
  • [45] Simson D. Stanisław Balcerzyk-życie i twórczość, Wiadomości Matematyczne, 2014;50(2):261-284. URL bwmeta1.element.baztech-9570d395-ca66-44d6-9978-30dbf33ce6c1.
  • [46] Simson D. Representation types of the category of subprojective representations of a finite poset over K[t]=(tm) and a solution of a Birkhoff type problem, J. Algebra 2007;311(1):1-30. URL https://doi.org/10.1016/j.jalgebra.2007.01.029.
  • [47] Simson D, and Wojewodsky M. An Algorithmic Solution of a Birkhoff Type Problem, Fundamenta Informaticae. 2008;83(4):389-410.
  • [48] Suárez H. Kozulity for graded skew PBW extensions, Communications in Algebra, 2017;45(10):4569-4580; doi:10.1080/00927872.2016.1272694.
  • [49] Suárez H, and Reyes MA. Koszulity for skew PBW extensions over fields, JP Journal of Algebra, Number Theory and Applications, 2017;39:181-203.
  • [50] Venegas C. Automorphisms for skew PBW extensions and skew quantum polynomial rings, Communications in Algebra, 2015;42(5):1877-1897. URL https://doi.org/10.1080/00927872.2013.879163.
  • [51] Woronowicz SL. Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS, Kyoto Univ., 1987;23(1):117-181. doi:10.2977/prims/1195176848.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cf86cf2-ee0d-4dd2-b2ae-a0a574ced396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.